1
|
Jacobsson E, Strömstedt AA, Andersson HS, Avila C, Göransson U. Peptide Toxins from Antarctica: The Nemertean Predator and Scavenger Parborlasia corrugatus (McIntosh, 1876). Toxins (Basel) 2024; 16:209. [PMID: 38787061 PMCID: PMC11126048 DOI: 10.3390/toxins16050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: the nemertean worm Parborlasia corrugatus (McIntosh, 1876). Transcriptome mining revealed a total of ten putative toxins with a cysteine pattern similar to that of alpha nemertides, four nemertide-beta-type sequences, and two novel full-length parborlysins. Nemertean worms express toxins in the epidermal mucus. Here, the expression was determined by liquid chromatography combined with mass spectrometry. The findings include a new type of nemertide, 8750 Da, containing eight cysteines. In addition, we report the presence of six cysteine-containing peptides. The toxicity of tissue extracts and mucus fractions was tested in an Artemia assay. Notably, significant activity was observed both in tissue and the high-molecular-weight mucus fraction, as well as in a parborlysin fraction. Membrane permeabilization experiments display the membranolytic activity of some peptides, most prominently the parborlysin fraction, with an estimated EC50 of 70 nM.
Collapse
Affiliation(s)
- Erik Jacobsson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75123 Uppsala, Sweden; (E.J.); (A.A.S.)
| | - Adam A. Strömstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75123 Uppsala, Sweden; (E.J.); (A.A.S.)
| | - Håkan S. Andersson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Conxita Avila
- Department of Evolutionary Biology, and Ecology, Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain;
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 75123 Uppsala, Sweden; (E.J.); (A.A.S.)
| |
Collapse
|
2
|
Kırcı D, Demirci F, Demirci B. Microbial Transformation of Hesperidin and Biological Evaluation. ACS OMEGA 2023; 8:42610-42621. [PMID: 38024700 PMCID: PMC10652256 DOI: 10.1021/acsomega.3c05334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
The main aim of the study was the biotransformation evaluation of hesperidin for functionalization by 25 different nonhuman pathogenic microorganisms. As a result, four metabolites were identified and characterized. The structure of pinocembrin and naringenin from the microbial transformation of hesperidin was determined initially with LC/MS-MS. The metabolites eriodictyol and hesperetin were isolated, and their molecular structure was determined by NMR and MS. Pinocembrin, eriodictyol, and naringenin were characterized as new hesperidin microbial transformation metabolites, to the best of our knowledge. In order to evaluate the bioactivity, in vitro 5-lipoxygenase (5-LOX) enzyme inhibition, antioxidant, antimicrobial, and acute toxicity evaluations using the brine shrimp assay of hesperidin and its metabolites were performed comparatively. According to antioxidant and anti-inflammatory activity results, hesperetin metabolite was more active than naringenin and hesperidin. The antimicrobial activity of hesperetin and naringenin against the human pathogenic Staphylococcus aureus strain was relatively higher when compared with the substrate hesperidin. In line with this result, biofilm activity of hesperetin and naringenin against S. aureus with combination studies using biofilm formation methods was carried out. The checkerboard combination method was utilized for biofilm layering, also for the first time in the present study. As an initial result, it was observed that hesperidin and naringenin exerted a synergistic activity with a fractional inhibitory concentration index (FICI) value of 1.063. Considering the bioactivity of hesperidin, hesperetin, and naringenin used as substrates are relatively nontoxic. The microbial and enzymatic biotransformation of natural products such as hesperetin and its new bioactive metabolites still have pharmacological potential, which needs further experimentation at the molecular level..
Collapse
Affiliation(s)
- Damla Kırcı
- Department
of Pharmacognosy, Faculty of Pharmacy, Selçuk
University, Konya 42150, Türkiye
| | - Fatih Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Türkiye
- Faculty
of Pharmacy, Eastern Mediterranean University, N. Cyprus, Via Mersin, Famagusta 99628, Türkiye
| | - Betül Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Türkiye
| |
Collapse
|
3
|
Sonoda GG, Tobaruela EDC, Norenburg J, Fabi JP, Andrade SCS. Venomous Noodles: The Evolution of Toxins in Nemertea through Positive Selection and Gene Duplication. Toxins (Basel) 2023; 15:650. [PMID: 37999513 PMCID: PMC10674772 DOI: 10.3390/toxins15110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Some, probably most and perhaps all, members of the phylum Nemertea are poisonous, documented so far from marine and benthic specimens. Although the toxicity of these animals has been long known, systematic studies on the characterization of toxins, mechanisms of toxicity, and toxin evolution for this group are scarce. Here, we present the first investigation of the molecular evolution of toxins in Nemertea. Using a proteo-transcriptomic approach, we described toxins in the body and poisonous mucus of the pilidiophoran Lineus sanguineus and the hoplonemertean Nemertopsis pamelaroeae. Using these new and publicly available transcriptomes, we investigated the molecular evolution of six selected toxin gene families. In addition, we also characterized in silico the toxin genes found in the interstitial hoplonemertean, Ototyphlonemertes erneba, a meiofaunal taxa. We successfully identified over 200 toxin transcripts in each of these species. Evidence of positive selection and gene duplication was observed in all investigated toxin genes. We hypothesized that the increased rates of gene duplications observed for Pilidiophora could be involved with the expansion of toxin genes. Studies concerning the natural history of Nemertea are still needed to understand the evolution of their toxins. Nevertheless, our results show evolutionary mechanisms similar to other venomous groups.
Collapse
Affiliation(s)
- Gabriel Gonzalez Sonoda
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
- Instituto Butantan, São Paulo 05503-900, Brazil
| | - Eric de Castro Tobaruela
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | | | - João Paulo Fabi
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
| |
Collapse
|
4
|
Kasheverov IE, Logashina YA, Kornilov FD, Lushpa VA, Maleeva EE, Korolkova YV, Yu J, Zhu X, Zhangsun D, Luo S, Stensvåg K, Kudryavtsev DS, Mineev KS, Andreev YA. Peptides from the Sea Anemone Metridium senile with Modified Inhibitor Cystine Knot (ICK) Fold Inhibit Nicotinic Acetylcholine Receptors. Toxins (Basel) 2022; 15:28. [PMID: 36668848 PMCID: PMC9866706 DOI: 10.3390/toxins15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in the functioning of the central and peripheral nervous systems, and other organs of living creatures. There are several subtypes of nAChRs, and almost all of them are considered as pharmacological targets in different pathological states. The crude venom of the sea anemone Metridium senile showed the ability to interact with nAChRs. Four novel peptides (Ms11a-1-Ms11a-4) with nAChR binding activity were isolated. These peptides stabilized by three disulfide bridges have no noticeable homology with any known peptides. Ms11a-1-Ms11a-4 showed different binding activity towards the muscle-type nAChR from the Torpedo californica ray. The study of functional activity and selectivity for the most potent peptide (Ms11a-3) revealed the highest antagonism towards the heterologous rat α9α10 nAChR compared to the muscle and α7 receptors. Structural NMR analysis of two toxins (Ms11a-2 and Ms11a-3) showed that they belong to a new variant of the inhibitor cystine knot (ICK) fold but have a prolonged loop between the fifth and sixth cysteine residues. Peptides Ms11a-1-Ms11a-4 could represent new pharmacological tools since they have structures different from other known nAChRs inhibitors.
Collapse
Affiliation(s)
- Igor E. Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Yulia A. Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia
| | - Fedor D. Kornilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russia
| | - Vladislav A. Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russia
| | - Ekaterina E. Maleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Yuliya V. Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Jinpeng Yu
- Medical School, Guangxi University, Nanning 530004, China
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China
| | | | - Sulan Luo
- Medical School, Guangxi University, Nanning 530004, China
| | - Klara Stensvåg
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT—The Arctic University of Norway, NO 9037 Tromsø, Norway
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russia
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia
| |
Collapse
|