1
|
Culver KD, Sadecki PW, Jackson JK, Brown ZA, Hnilica ME, Wu J, Shaw LN, Wommack AJ, Hicks LM. Identification and Characterization of CC-AMP1-like and CC-AMP2-like Peptides in Capsicum spp. J Proteome Res 2024; 23:2948-2960. [PMID: 38367000 PMCID: PMC11296913 DOI: 10.1021/acs.jproteome.3c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Antimicrobial peptides (AMPs) are compounds with a variety of bioactive properties. Especially promising are their antibacterial activities, often toward drug-resistant pathogens. Across different AMP sources, AMPs expressed within plants are relatively underexplored with a limited number of plant AMP families identified. Recently, we identified the novel AMPs CC-AMP1 and CC-AMP2 in ghost pepper plants (Capsicum chinense x frutescens), exerting promising antibacterial activity and not classifying into any known plant AMP family. Herein, AMPs related to CC-AMP1 and CC-AMP2 were identified within both Capsicum annuum and Capsicum baccatum. In silico predictions throughout plants were utilized to illustrate that CC-AMP1-like and CC-AMP2-like peptides belong to two broader AMP families, with three-dimensional structural predictions indicating that CC-AMP1-like peptides comprise a novel subfamily of α-hairpinins. The antibacterial activities of several closely related CC-AMP1-like peptides were compared with a truncated version of CC-AMP1 possessing significantly more activity than the full peptide. This truncated peptide was further characterized to possess broad-spectrum antibacterial activity against clinically relevant ESKAPE pathogens. These findings illustrate the value in continued study of plant AMPs toward characterization of novel AMP families, with CC-AMP1-like peptides possessing promising bioactivity.
Collapse
Affiliation(s)
- Kevin D. Culver
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Jessica K. Jackson
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Zoe A. Brown
- Department of Chemistry, High Point University, High Point, NC, 27268, United States
| | - Megan E. Hnilica
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Jingyun Wu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Lindsey N. Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa, FL, 33620, United States
| | - Andrew J. Wommack
- Department of Chemistry, High Point University, High Point, NC, 27268, United States
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| |
Collapse
|
2
|
Satchanska G, Davidova S, Gergova A. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Antibiotics (Basel) 2024; 13:202. [PMID: 38534637 DOI: 10.3390/antibiotics13030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Antimicrobial peptides (AMPs) are usually made up of fewer than 100 amino acid residues. They are found in many living organisms and are an important factor in those organisms' innate immune systems. AMPs can be extracted from various living sources, including bacteria, plants, animals, and even humans. They are usually cationic peptides with an amphiphilic structure, which allows them to easily bind and interact with the cellular membranes of viruses, bacteria, fungi, and other pathogens. They can act against both Gram-negative and Gram-positive pathogens and have various modes of action against them. Some attack the pathogens' membranes, while others target their intracellular organelles, as well as their nucleic acids, proteins, and metabolic pathways. A crucial area of AMP use is related to their ability to help with emerging antibiotic resistance: some AMPs are active against resistant strains and are susceptible to peptide engineering. This review considers AMPs from three key sources-plants, animals, and humans-as well as their modes of action and some AMP sequences.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Slavena Davidova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Alexandra Gergova
- BioLaboratory-MF-NBU, Department of Natural Sciences, New Bulgarian University, 1618 Sofia, Bulgaria
| |
Collapse
|
3
|
Stair ER, Hicks LM. Recent advances in mass spectrometry-based methods to investigate reversible cysteine oxidation. Curr Opin Chem Biol 2023; 77:102389. [PMID: 37776664 DOI: 10.1016/j.cbpa.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The post-translational modification of cysteine to diverse oxidative states is understood as a critical cellular mechanism to combat oxidative stress. To study the role of cysteine oxidation, cysteine enrichments and subsequent analysis via mass spectrometry are necessary. As such, technologies and methods are rapidly developing for sensitive and efficient enrichments of cysteines to further explore its role in signaling pathways. In this review, we analyze recent developments in methods to miniaturize cysteine enrichments, analyze the underexplored disulfide bound redoxome, and quantify site-specific cysteine oxidation. We predict that further development of these methods will improve cysteine coverage across more diverse organisms than those previously studied and elicit novel roles cysteines play in stress response.
Collapse
Affiliation(s)
- Evan R Stair
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Álvarez-Urdiola R, Borràs E, Valverde F, Matus JT, Sabidó E, Riechmann JL. Peptidomics Methods Applied to the Study of Flower Development. Methods Mol Biol 2023; 2686:509-536. [PMID: 37540375 DOI: 10.1007/978-1-0716-3299-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.
Collapse
Affiliation(s)
- Raquel Álvarez-Urdiola
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Valverde
- Institute for Plant Biochemistry and Photosynthesis CSIC - University of Seville, Seville, Spain
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, Roy T, Lawal AA, Ogah NB, Olorundare OE, Chamcheu JC. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines. PLANTS (BASEL, SWITZERLAND) 2022; 11:3271. [PMID: 36501311 PMCID: PMC9737898 DOI: 10.3390/plants11233271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application.
Collapse
Affiliation(s)
- Francis Alfred Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Bilqis Abiola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Abdulmalik Babatunde Yusuf
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Oluwakorede Joshua Adedeji
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Joy Temiloluwa Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Kelvin Oluwafemi Akhigbe
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| | - Azeemat Adeola Lawal
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin 240272, Nigeria
| | - Ngozi Blessing Ogah
- Department of Biotechnology, Ebonyi State University, Abakaliki 480101, Nigeria
| | | | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209, USA
| |
Collapse
|
6
|
In silico prediction and mass spectrometric characterization of botanical antimicrobial peptides. Methods Enzymol 2022; 663:157-175. [PMID: 35168787 DOI: 10.1016/bs.mie.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMPs) are promising compounds for the treatment of antibiotic-resistant bacteria and are found across all organisms, including plants. Unlike most antibiotics, AMPs tend to act on more generalized and multiple targets, making development of resistance more difficult. Conventional approaches toward AMP identification include bioactivity-guided fractionation and genome mining. Complementary methods leveraging bioactivity-guided fractionation, cysteine motif-guided in silico AMP prediction, and mass spectrometric approaches can be combined to expand botanical AMP discovery. Herein, we present an integrated workflow which serves to streamline implementation toward a robust botanical AMP discovery pipeline.
Collapse
|