1
|
Gou Y, Jing Y, Song J, Nagdy MM, Peng C, Zeng L, Chen M, Lan X, Htun ZLL, Liao Z, Li Y. A novel bHLH gene responsive to low nitrogen positively regulates the biosynthesis of medicinal tropane alkaloids in Atropa belladonna. Int J Biol Macromol 2024; 266:131012. [PMID: 38522709 DOI: 10.1016/j.ijbiomac.2024.131012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6β-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.
Collapse
Affiliation(s)
- Yuqin Gou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yanming Jing
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mohammad Mahmoud Nagdy
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Department of Medicinal and Aromatic Plants Research, National Research Centre, 12311 Dokki, Cairo, Egypt
| | - Chao Peng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingjiang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Xizang Characteristic Agricultural and Animal Husbandry Resources, Tibet Agriculture and Animal Husbandry College, Nyingchi of Xizang 860000, China
| | - Zun Lai Lai Htun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China; Department of Botany, University of Magway, Magway 04012, Myanmar
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City State Key Laboratory of Silkworm Genome Biology, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang X, Wang L, Zhang J, Liu Y, Xie H, Zeng J, Cheng P. Photoredox catalysed reductive aminomethylation of quaternary benzophenanthridine alkaloids. Nat Prod Res 2023; 37:3551-3555. [PMID: 35767365 DOI: 10.1080/14786419.2022.2092732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022]
Abstract
Reduction of C = N double bond is the most important phase I metabolism process of quaternary benzophenanthridine alkaloids (QBAs). Inspired by the NADPH mediated reduction in QBAs, a visible-light promoted reductive aminomethylation of QBAs for synthesis of 6-substituted benzophenanthridines was reported using QBAs and N,N-dimethylaniline as coupling partners in this study. An α-amino radical that derived from QBAs was supposed to be the key intermediate in this visible-light promoted reductive aminomethylation reaction.
Collapse
Affiliation(s)
- Xinhao Wang
- Hunan Agricultural University, Changsha, Hunan, China
| | - Lin Wang
- Hunan Agricultural University, Changsha, Hunan, China
| | | | - Yisong Liu
- Hunan Agricultural University, Changsha, Hunan, China
| | - Hongqi Xie
- Hunan Agricultural University, Changsha, Hunan, China
| | - Jianguo Zeng
- Hunan Agricultural University, Changsha, Hunan, China
| | - Pi Cheng
- Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
3
|
Wang L, Li K, Ye T, Huang L, Wu H, Zhang J, Xie H, Liu Y, Zeng J, Cheng P. Visible-Light-Promoted α-Benzylation of N-Phenyl α-Amino Acids to α-Amino Phenylpropanoids. J Org Chem 2023; 88:11924-11934. [PMID: 37560787 DOI: 10.1021/acs.joc.3c01196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A new method for the synthesis of α-amino phenylpropanoids under blue light-emitting diode irradiation has been developed through α-C-H benzylation of readily available N-phenyl glycine ester with benzyl oxalates as a coupling partner under mild conditions. A range of N-phenyl glycine esters were successfully converted to α-amino phenylpropanoid products in moderate to good yields. The utility of this methodology is underlined by its application to the late-state modification of natural products.
Collapse
Affiliation(s)
- Lin Wang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Kang Li
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Tian Ye
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lei Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huilan Wu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jingxuan Zhang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hongqi Xie
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yisong Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Pi Cheng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
4
|
An Update of the Sanguinarine and Benzophenanthridine Alkaloids’ Biosynthesis and Their Applications. Molecules 2022; 27:molecules27041378. [PMID: 35209167 PMCID: PMC8876366 DOI: 10.3390/molecules27041378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022] Open
Abstract
Benzophenanthridines belong to the benzylisoquinolic alkaloids, representing one of the main groups of this class. These alkaloids include over 120 different compounds, mostly in plants from the Fumariaceae, Papaveraceae, and Rutaceae families, which confer chemical protection against pathogens and herbivores. Industrial uses of BZD include the production of environmentally friendly agrochemicals and livestock food supplements. However, although mainly considered toxic compounds, plants bearing them have been used in traditional medicine and their medical applications as antimicrobials, antiprotozoals, and cytotoxic agents have been envisioned. The biosynthetic pathways for some BZD have been established in different species, allowing for the isolation of the genes and enzymes involved. This knowledge has resulted in a better understanding of the process controlling their synthesis and an opening of the gates towards their exploitation by applying modern biotechnological approaches, such as synthetic biology. This review presents the new advances on BDZ biosynthesis and physiological roles. Industrial applications, mainly with pharmacological approaches, are also revised.
Collapse
|
5
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|