1
|
Maykovich T, Hardy S, Hamann MT, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoclast Function. JOURNAL OF NATURAL PRODUCTS 2024; 87:560-566. [PMID: 38383319 PMCID: PMC11173362 DOI: 10.1021/acs.jnatprod.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Manzamine-A is a marine-derived alkaloid that has demonstrated antimalarial and antiproliferative properties and is an emerging drug lead compound as a possible intervention in certain cancers. This compound has been found to modulate SIX1 gene expression, a target that is critical for the proliferation and survival of cells via various developmental pathways. As yet, little research has focused on manzamine-A and how its use may affect tissue systems including bone. Here we hypothesized that manzamine-A, through its interaction with SIX1, would alter precursor cells that give rise to the bone cell responsible for remodeling: the osteoclast. We further hypothesized reduced effects in differentiated osteoclasts, as these cells are generally not mitotic. We interrogated the effects of manzamine-A on preosteoclasts and osteoclasts. qrtPCR, MTS cell viability, Caspase 3/7, and TRAP staining were used as a functional assay. Preosteoclasts show responsiveness to manzamine-A treatment exhibited by decreases in cell viability and an increase in apoptosis. Osteoclasts also proved to be affected by manzamine-A but only at higher concentrations where apoptosis was increased and activation was reduced. In summary, our presented results suggest manzamine-A may have significant effects on bone development and health through multiple cell targets, previously shown in the osteoblast cell lineage, the cell responsible for mineralized tissue formation, and here in the osteoclast, the cell responsible for the removal of mineralized tissue and renewal via precipitation of bone remodeling.
Collapse
Affiliation(s)
- Tyler Maykovich
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Samantha Hardy
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Mark T Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, South Carolina 29425-1410, United States
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Hanna G, Benjamin MM, Choo YM, De R, Schinazi RF, Nielson SE, Hevel JM, Hamann MT. Informatics and Computational Approaches for the Discovery and Optimization of Natural Product-Inspired Inhibitors of the SARS-CoV-2 2'- O-Methyltransferase. JOURNAL OF NATURAL PRODUCTS 2024; 87:217-227. [PMID: 38242544 PMCID: PMC10898454 DOI: 10.1021/acs.jnatprod.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
The urgent need for new classes of orally available, safe, and effective antivirals─covering a breadth of emerging viruses─is evidenced by the loss of life and economic challenges created by the HIV-1 and SARS-CoV-2 pandemics. As frontline interventions, small-molecule antivirals can be deployed prophylactically or postinfection to control the initial spread of outbreaks by reducing transmissibility and symptom severity. Natural products have an impressive track record of success as prototypic antivirals and continue to provide new drugs through synthesis, medicinal chemistry, and optimization decades after discovery. Here, we demonstrate an approach using computational analysis typically used for rational drug design to identify and develop natural product-inspired antivirals. This was done with the goal of identifying natural product prototypes to aid the effort of progressing toward safe, effective, and affordable broad-spectrum inhibitors of Betacoronavirus replication by targeting the highly conserved RNA 2'-O-methyltransferase (2'-O-MTase). Machaeriols RS-1 (7) and RS-2 (8) were identified using a previously outlined informatics approach to first screen for natural product prototypes, followed by in silico-guided synthesis. Both molecules are based on a rare natural product group. The machaeriols (3-6), isolated from the genus Machaerium, endemic to Amazonia, inhibited the SARS-CoV-2 2'-O-MTase more potently than the positive control, Sinefungin (2), and in silico modeling suggests distinct molecular interactions. This report highlights the potential of computationally driven screening to leverage natural product libraries and improve the efficiency of isolation or synthetic analog development.
Collapse
Affiliation(s)
- George
S. Hanna
- Department
of Drug Discovery, Biomedical Sciences and Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Menny M. Benjamin
- Department
of Drug Discovery, Biomedical Sciences and Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yeun-Mun Choo
- Department
of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ramyani De
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine, 1760 Haygood Drive, NE Atlanta, Georgia 30322, United States
| | - Raymond F. Schinazi
- Center
for ViroScience and Cure, Laboratory of Biochemical Pharmacology,
Department of Pediatrics, Emory University
School of Medicine, 1760 Haygood Drive, NE Atlanta, Georgia 30322, United States
| | - Sarah E. Nielson
- Department
of Chemistry & Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Joan M. Hevel
- Department
of Chemistry & Biochemistry, Utah State
University, Logan, Utah 84322, United States
| | - Mark T. Hamann
- Department
of Drug Discovery, Biomedical Sciences and Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
3
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
4
|
Boswell Z, Verga JU, Mackle J, Guerrero-Vazquez K, Thomas OP, Cray J, Wolf BJ, Choo YM, Croot P, Hamann MT, Hardiman G. In-Silico Approaches for the Screening and Discovery of Broad-Spectrum Marine Natural Product Antiviral Agents Against Coronaviruses. Infect Drug Resist 2023; 16:2321-2338. [PMID: 37155475 PMCID: PMC10122865 DOI: 10.2147/idr.s395203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023] Open
Abstract
The urgent need for SARS-CoV-2 controls has led to a reassessment of approaches to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. There are yet no clinically approved broad-spectrum antivirals available for beta-coronaviruses. Discovery pipelines for pan-virus medications against a broad range of betacoronaviruses are therefore a priority. A variety of marine natural product (MNP) small molecules have shown inhibitory activity against viral species. Access to large data caches of small molecule structural information is vital to finding new pharmaceuticals. Increasingly, molecular docking simulations are being used to narrow the space of possibilities and generate drug leads. Combining in-silico methods, augmented by metaheuristic optimization and machine learning (ML) allows the generation of hits from within a virtual MNP library to narrow screens for novel targets against coronaviruses. In this review article, we explore current insights and techniques that can be leveraged to generate broad-spectrum antivirals against betacoronaviruses using in-silico optimization and ML. ML approaches are capable of simultaneously evaluating different features for predicting inhibitory activity. Many also provide a semi-quantitative measure of feature relevance and can guide in selecting a subset of features relevant for inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Zachary Boswell
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
| | - Jacopo Umberto Verga
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
- Genomic Data Science, University of Galway, Galway, Ireland
| | - James Mackle
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
| | | | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, H91TK33Ireland
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine and Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yeun-Mun Choo
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Croot
- Irish Centre for Research in Applied Geoscience, Earth and Ocean Sciences and Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Mark T Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- School of Biological Sciences and Institute for Global Security, Queen's University, Belfast, Northern Ireland, UK
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Hardy S, Choo YM, Hamann M, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Mar Drugs 2022; 20:647. [PMID: 36286470 PMCID: PMC9604769 DOI: 10.3390/md20100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.
Collapse
Affiliation(s)
- Samantha Hardy
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mark Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Wan J, Jiang CX, Tang Y, Ma GL, Tong YP, Jin ZX, Zang Y, E.A. Osman E, Li J, Xiong J, Hu JF. Structurally diverse glycosides of secoiridoid, bisiridoid, and triterpene-bisiridoid conjugates from the flower buds of two Caprifoliaceae plants and their ATP-citrate lyase inhibitory activities. Bioorg Chem 2022; 120:105630. [DOI: 10.1016/j.bioorg.2022.105630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 01/18/2023]
|