1
|
Dumitrescu DG, Hatzios SK. Emerging roles of low-molecular-weight thiols at the host-microbe interface. Curr Opin Chem Biol 2023; 75:102322. [PMID: 37201290 PMCID: PMC10524283 DOI: 10.1016/j.cbpa.2023.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
2
|
Vassallo A, Modi A, Quagliariello A, Bacci G, Faddetta T, Gallo M, Provenzano A, La Barbera A, Lombardo G, Maggini V, Firenzuoli F, Zaccaroni M, Gallo G, Caramelli D, Aleo Nero C, Baldi F, Fani R, Palumbo Piccionello A, Pucciarelli S, Puglia AM, Sineo L. Novel Sources of Biodiversity and Biomolecules from Bacteria Isolated from a High Middle Ages Soil Sample in Palermo (Sicily, Italy). Microbiol Spectr 2023; 11:e0437422. [PMID: 37071008 PMCID: PMC10269861 DOI: 10.1128/spectrum.04374-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
The urban plan of Palermo (Sicily, Italy) has evolved throughout Punic, Roman, Byzantine, Arab, and Norman ages until it stabilized within the borders that correspond to the current historic center. During the 2012 to 2013 excavation campaign, new remains of the Arab settlement, directly implanted above the structures of the Roman age, were found. The materials investigated in this study derived from the so-called Survey No 3, which consists of a rock cavity of subcylindrical shape covered with calcarenite blocks: it was probably used to dispose of garbage during the Arabic age and its content, derived from daily activities, included grape seeds, scales and bones of fish, small animal bones, and charcoals. Radiocarbon dating confirmed the medieval origin of this site. The composition of the bacterial community was characterized through a culture-dependent and a culture-independent approach. Culturable bacteria were isolated under aerobic and anaerobic conditions and the total bacterial community was characterized through metagenomic sequencing. Bacterial isolates were tested for the production of compounds with antibiotic activity: a Streptomyces strain, whose genome was sequenced, was of particular interest because of its inhibitory activity, which was due to the Type I polyketide aureothin. Moreover, all strains were tested for the production of secreted proteases, with those belonging to the genus Nocardioides having the most active enzymes. Finally, protocols commonly used for ancient DNA studies were applied to evaluate the antiquity of isolated bacterial strains. Altogether these results show how paleomicrobiology might represent an innovative and unexplored source of novel biodiversity and new biotechnological tools. IMPORTANCE One of the goals of paleomicrobiology is the characterization of the microbial community present in archaeological sites. These analyses can usually provide valuable information about past events, such as occurrence of human and animal infectious diseases, ancient human activities, and environmental changes. However, in this work, investigations about the composition of the bacterial community of an ancient soil sample (harvested in Palermo, Italy) were carried out aiming to screen ancient culturable strains with biotechnological potential, such as the ability to produce bioactive molecules and secreted hydrolytic enzymes. Besides showing the biotechnological relevance of paleomicrobiology, this work reports a case of germination of putatively ancient bacterial spores recovered from soil rather than extreme environments. Moreover, in the case of spore-forming species, these results raise questions about the accuracy of techniques usually applied to estimate antiquity of DNA, as they could lead to its underestimation.
Collapse
Affiliation(s)
- Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Michele Gallo
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre (VE), Italy
| | - Aldesia Provenzano
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio,” University of Florence, Florence (FI), Italy
| | - Andrea La Barbera
- Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa (GE), Italy
| | - Giovanna Lombardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Valentina Maggini
- Research and Innovation Center in Phytotherapy and Integrated Medicine, Tuscany Region, Careggi University Hospital, Florence (FI), Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine, Tuscany Region, Careggi University Hospital, Florence (FI), Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Carla Aleo Nero
- Soprintendenza ai Beni culturali e ambientali di Palermo, Palermo (PA), Italy
| | - Franco Baldi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Venezia Mestre (VE), Italy
| | - Renato Fani
- Department of Biology, University of Florence, Florence (FI), Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| | - Luca Sineo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo (PA), Italy
| |
Collapse
|
3
|
Vind K, Brunati C, Simone M, Sosio M, Donadio S, Iorio M. Megalochelin, a Tridecapeptide Siderophore from a Talented Streptomycete. ACS Chem Biol 2023; 18:861-874. [PMID: 36920304 PMCID: PMC10127220 DOI: 10.1021/acschembio.2c00958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Streptomycetes are bacteria known for their extraordinary biosynthetic capabilities. Herein, we describe the genome and metabolome of a particularly talented strain, Streptomyces ID71268. Its 8.4-Mbp genome harbors 32 bioinformatically predicted biosynthetic gene clusters (BGCs), out of which 10 are expressed under a single experimental condition. In addition to five families of known metabolites with previously assigned BGCs (nigericin, azalomycin F, ectoine, SF2766, and piericidin), we were able to predict BGCs for three additional metabolites: streptochlorin, serpetene, and marinomycin. The strain also produced two families of presumably novel metabolites, one of which was associated with growth inhibitory activity against the human opportunistic pathogen Acinetobacter baumannii in an iron-dependent manner. Bioassay-guided fractionation, followed by extensive liquid chromatography-mass spectrometry (LC-MS) and NMR analyses, established that the molecule responsible for the observed antibacterial activity is an unusual tridecapeptide siderophore with a ring-and-tail structure: the heptapeptide ring is formed through a C-C bond between a 2,3-dihydroxybenzoate (DHB) cap on Gly1 and the imidazole moiety of His7, while the hexapeptide tail is sufficient for binding iron. This molecule, named megalochelin, is the largest known siderophore. The megalochelin BGC encodes a 13-module nonribosomal peptide synthetase for the synthesis of the tridecapeptide, and a copper-dependent oxidase, likely responsible for the DHB-imidazole cross-link, whereas the genes for synthesis of the DHB starter unit are apparently specified in trans by a different BGC. Our results suggest that prolific producers of specialized metabolites may conceal hidden treasures within a background of known compounds.
Collapse
Affiliation(s)
- Kristiina Vind
- NAICONS
Srl, 20139 Milan, Italy
- Host-Microbe
Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|