1
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
2
|
Rubin D, Sansom CE, Lucas NT, McAdam CJ, Simpson J, Lord JM, Perry NB. O-Acylated Flavones in the Alpine Daisy Celmisia viscosa: Intraspecific Variation. JOURNAL OF NATURAL PRODUCTS 2022; 85:1904-1911. [PMID: 35876856 DOI: 10.1021/acs.jnatprod.2c00207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavonoids acylated on their core phenolic groups are rare. The Aotearoa New Zealand endemic alpine daisy Celmisia viscosa is widespread, but its flavonoids have not previously been identified. Leaf extracts yielded a series of 8-O-acylated flavones with combinations of 3-methylbutanoate, 2-methylbutanoate, and 2-methylpropanoate groups and one, two, or three O-methyls, all previously unreported. Regiochemistries of 8-(3″-methylbutanoyl)-5-hydroxy-6,7,4'-trimethoxyflavone (5) and 8-(2″-methylbutanoyl)-5,7,4'-trihydroxy-6-methoxyflavone (10) were defined by X-ray crystallography. LC analyses of leaf extracts from the full geographic range of C. viscosa showed intraspecific variation of these flavones: most had high concentrations of trimethoxy 8-O-acylated flavones, but dimethoxy 8-O-acylated flavones were the most abundant flavonoids in two individuals. Three other viscid (sticky leaved) Celmisa species also contained these rare flavones, but four nonviscid Celmisa had none detectable.
Collapse
Affiliation(s)
- David Rubin
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Catherine E Sansom
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Nigel T Lucas
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - C John McAdam
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Jim Simpson
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Janice M Lord
- Department of Botany, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Nigel B Perry
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|