1
|
Ma S, Wu Y, Min H, Ge L, Yang K. Triterpenoid Saponins and Flavonoid Glycosides from the Flower of Camellia flavida and Their Cytotoxic and α-Glycosidase Inhibitory Activities. Int J Mol Sci 2024; 25:10977. [PMID: 39456760 PMCID: PMC11506924 DOI: 10.3390/ijms252010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Camellia flavida var. flavida, commonly known as "Jinhua Tea", has its flowers and leaves traditionally utilized as tea and functional food sources. However, there is limited knowledge about its bioactive components and their biological activities. This study isolated ten previously unidentified glycoside compounds from the flowers of Camellia flavida, including three oleanane-type triterpenoid saponins (compounds 1-3) and seven flavonoid glycosides (compounds 4-10), collectively named flavidosides A-J. This study assessed the cytotoxicity of these compounds against a panel of human cancer cell lines and their α-glucosidase inhibitory activities. Notably, flavidoside C showed significant cytotoxicity against BEL-7402 and MCF-7 cell lines, with IC50 values of 4.94 ± 0.41 and 1.65 ± 0.39 μM, respectively. Flavidoside H exhibited potent α-glucosidase inhibitory activity, with an IC50 value of 1.17 ± 0.30 mM. These findings underscore the potential of Camellia flavida in the development of functional foods.
Collapse
Affiliation(s)
| | | | | | - Li Ge
- Medical School of Guangxi University, Nanning 530004, China (Y.W.); (H.M.)
| | - Kedi Yang
- Medical School of Guangxi University, Nanning 530004, China (Y.W.); (H.M.)
| |
Collapse
|
2
|
Feng DH, Cui JL. Progress on metabolites of Astragalus medicinal plants and a new factor affecting their formation: Biotransformation of endophytic fungi. Arch Pharm (Weinheim) 2024; 357:e2400249. [PMID: 38838334 DOI: 10.1002/ardp.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
It is generally believed that the main influencing factors of plant metabolism are genetic and environmental factors. However, the transformation and catalysis of metabolic intermediates by endophytic fungi have become a new factor and resource attracting attention in recent years. There are over 2000 precious plant species in the Astragalus genus. In the past decade, at least 303 high-value metabolites have been isolated from the Astragalus medicinal plants, including 124 saponins, 150 flavonoids, two alkaloids, six sterols, and over 20 other types of compounds. These medicinal plants contain abundant endophytic fungi with unique functions, and nearly 600 endophytic fungi with known identity have been detected, but only about 35 strains belonging to 13 genera have been isolated. Among them, at least four strains affiliated to Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae, and Camarosporium laburnicola have demonstrated the ability to biotransform four saponin compounds from the Astragalus genus, resulting in the production of 66 new compounds, which have significantly enhanced our understanding of the formation of metabolites in plants of the Astragalus genus. They provide a scientific basis for improving the cultivation quality of Astragalus plants through the modification of dominant fungal endophytes or reshaping the endophytic fungal community. Additionally, they open up new avenues for the discovery of specialized, green, efficient, and sustainable biotransformation pathways for complex pharmaceutical intermediates.
Collapse
Affiliation(s)
- Ding-Hui Feng
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| |
Collapse
|
3
|
Li XS, Wang QL, Xu ZP, Liu MS, Liang XY, Zheng JC, Deng HY, Liu L, Huang YM, Yang MX, Yang XM. Structurally diverse cucurbitane-type triterpenoids from the tubers of Hemsleya chinensis with cytotoxic activity. PHYTOCHEMISTRY 2024; 220:114033. [PMID: 38373572 DOI: 10.1016/j.phytochem.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024]
Abstract
Ten previously undescribed cucurbitane-type triterpenoids, namely hemslyencins A-F (1-6) and hemslyencosides A-D (7-10), together with twenty previously reported compounds (11-30), were isolated from the tubers of Hemsleya chinensis. Their structures were elucidated by unambiguous spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR data). Hemslyencins A and B (1 and 2) possessing unique 9, 11-seco-ring system with a six-membered lactone moiety, were the first examples among of the cucurbitane-type triterpenoids, and hemslyencins C and D (3 and 4) and hemslyencoside D (10) are the infrequent pentacyclic cucurbitane triterpenes featuring a 6/6/6/5/6 fused system. The cytotoxic activities of all isolated compounds were evaluated against MCF-7, HCT-116, HeLa, and HepG2 cancer cells, and their structure-activity relationships (SARs) was discussed as well. Compounds 17, 25, and 26 showed significant cytotoxic effects with IC50 values ranging from 1.31 to 9.89 μM, among which compound 25 induced both apoptosis and cell cycle arrest at G2/M phase in a dose dependent manner against MCF-7 cells.
Collapse
Affiliation(s)
- Xiao-San Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China; Marine Biomedical Research Institute, The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, PR China.
| | - Qi-Lin Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Zhi-Peng Xu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ming-Shang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Xiao-Yan Liang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China; Marine Biomedical Research Institute, The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, PR China
| | - Jia-Chon Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Hong-Yao Deng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China; Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, Dongguan, 523808, PR China
| | - Yong-Mei Huang
- Marine Biomedical Research Institute, The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, 524023, PR China
| | - Mao-Xun Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China.
| | - Xue-Mei Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China.
| |
Collapse
|
4
|
Liu YX, Song XM, Dan LW, Tang JM, Jiang Y, Deng C, Zhang DD, Li YZ, Wang W. Astragali Radix: comprehensive review of its botany, phytochemistry, pharmacology and clinical application. Arch Pharm Res 2024; 47:165-218. [PMID: 38493280 DOI: 10.1007/s12272-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Astragali Radix (A. Radix) is the dried root of Astragalus membranaceus var. mongholicus (Bge) Hsiao or Astragalus membranaceus (Fisch.) Bge., belonging to the family Leguminosae, which is mainly distributed in China. A. Radix has been consumed as a tonic in China for more than 2000 years because of its medicinal effects of invigorating the spleen and replenishing qi. Currently, more than 400 natural compounds have been isolated and identified from A. Radix, mainly including saponins, flavonoids, phenylpropanoids, alkaloids, and others. Modern pharmacological studies have shown that A. Radix has anti-tumor, anti-inflammatory, immunomodulatory, anti-atherosclerotic, cardioprotective, anti-hypertensive, and anti-aging effects. It has been clinically used in the treatment of tumors, cardiovascular diseases, and cerebrovascular complications associated with diabetes with few side effects and high safety. This paper reviewed the progress of research on its chemical constituents, pharmacological effects, clinical applications, developing applications, and toxicology, which provides a basis for the better development and utilization of A. Radix.
Collapse
Affiliation(s)
- Ya-Xiao Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Lin-Wei Dan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Jia-Mei Tang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China.
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China.
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Xianyang, 712046, Shaanxi, China.
| |
Collapse
|
5
|
Kozhushnaya AB, Kolesnikova SA, Yurchenko EA, Lyakhova EG, Menshov AS, Kalinovsky AI, Popov RS, Dmitrenok PS, Ivanchina NV. Rhabdastrellosides A and B: Two New Isomalabaricane Glycosides from the Marine Sponge Rhabdastrella globostellata, and Their Cytotoxic and Cytoprotective Effects. Mar Drugs 2023; 21:554. [PMID: 37999378 PMCID: PMC10672615 DOI: 10.3390/md21110554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Investigation of the Vietnamese marine sponge Rhabdastrella globostellata led to the isolation of two new polar isomalabaricanes: rhabdastrellosides A (1) and B (2). Their structures and stereochemistry were elucidated with the application of 1D and 2D NMR, HRESIMS, and HRESIMS/MS methods, as well as chemical modifications and GC-MS analysis. Metabolites 1 and 2 are the first isomalabaricanes with non-oxidized cyclopentane ring in the tricyclic core system. Moreover, having a 3-O-disaccharide moiety in their structures, they increase a very rare group of isomalabaricane glycosides. We report here a weak cytotoxicity of 1 and 2 toward human neuroblastoma SH-SY5Y cells and normal rat H9c2 cardiomyocytes, as well as the cytoprotective activity of rhabdastrelloside B (2) at 1 µM evaluated using CoCl2-treated SH-SY5Y and H9c2 cells.
Collapse
|
6
|
Liu Q, Li J, Gu M, Kong W, Lin Z, Mao J, Zhang M, Jiang L, Liu C, Wang Y, Liu J. High-Throughput Phytochemical Unscrambling of Flowers Originating from Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao and Astragalus membranaceus (Fisch.) Bug. by Applying the Intagretive Plant Metabolomics Method Using UHPLC-Q-TOF-MS/MS. Molecules 2023; 28:6115. [PMID: 37630367 PMCID: PMC10458299 DOI: 10.3390/molecules28166115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao (MO) and Astragalus membranaceus (Fisch.) Bug. (ME) are two primary sources of the Astragalus herb, also known as "Huangqi" in China, which is widely applied to treat hypertension, glomerulonephritis, ischemic heart disease, and diabetes mellitus. As two different sources of the Astragalus herb, the chemical profiles of MO and ME may be different. Previous studies showed abundant differences in chemical composition between MO and ME. Therefore, the by-products of MO and ME, such as Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) P. K. Hsiao flower (MOF) and Astragalus membranaceus (Fisch.) Bug. flower (MEF), may have different phytochemical profiles. In this paper, a metabolomics method combined with ultra-high-performance liquid chromatography and electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was employed to analyze the components of MOF and MEF. Consequently, the results of principal component analysis (PCA) showed that MOF and MEF could be separated clearly. In total, 31 chemical markers differentiating MOF and MEF were successfully identified, including 22 flavonoids, 8 isoflavones and 1 benzopyran. Among them, the contents of 18 components, including Calycosin, Cyanidin-3-O-glucoside, Quercetin, Rutin, Kaempferol, Formononetin, Isomucronulatol and Prim-O-glucosylcimifugin in MEF, were significantly higher than in MOF. In turn, the contents of another 13 components, covering Biochanin A, Tectoridin, Isomucronulatol-7-O-glucoside, Liquiritin, Rhamnetin, etc., were lower in the MEF group than that in the MOF group. It is worth noting that flavonoids, especially flavonoid glycosides, were the primary active chemical ingredients in MOF and MEF. The 18 ingredients in MEF with a higher level carried out diverse activities, like anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor activities, which led us to speculate that MEF may have greater pharmacological effects and potential development prospects than MOF. The present results displayed that the contents of ingredients in the two different species of plants were radically different, and there was significant uniqueness to the components of MOF and MEF. Our study not only provides helpful chemical information for further quality assessment and active mechanism research of MOF and MEF but also offers scientific support for the resource utilization of MOF and MEF.
Collapse
Affiliation(s)
- Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Jinghui Li
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Wanying Kong
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Liyan Jiang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Can Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China; (Q.L.); (J.L.); (M.G.); (W.K.); (Z.L.); (J.M.); (M.Z.); (L.J.); (C.L.)
- The Research Institute of Astragalus Industry, Qiqihar Academy of Medical Sciences, Qiqihar Medical University, Bukui Street 333, Qiqihar 161006, China
| |
Collapse
|
7
|
Ye J, Huang Y, Jiang X, Shen P, Zhang C, Zhang J. Research on the interaction of astragaloside IV and calycosin in Astragalus membranaceus with HMGB1. Chin Med 2023; 18:81. [PMID: 37403077 DOI: 10.1186/s13020-023-00789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND High mobility group box 1 protein (HMGB1), a lethal late inflammatory mediator, contributes to the pathogenesis of diverse inflammatory and infectious diseases. Astragaloside IV and calycosin as active ingredients in Astragalus membranaceus, possess potent regulatory ability on HMGB1-induced inflammation, however, the interaction between these two phytochemicals and HMGB1 has not been elucidated yet. METHODS To further investigate the interaction of astragaloside IV, calycosin with HMGB1 protein, surface plasma resonance (SPR) and a series of spectroscopic methods, including UV spectra, fluorescence spectroscopy, circular dichroism (CD), were used. Molecular docking was also carried out to predict the atomic level's binding modes between two components and HMGB1. RESULTS Astragaloside IV and calycosin were found to be able to bind HMGB1 directly and affect the secondary structure and environment of the chromogenic amino acids of HMGB1 to different extents. In silico, astragaloside IV and calycosin showed a synergistic effect by binding to the two independent domains B-box and A-box in HMGB1, respectively, where hydrogen and hydrophobicity bonds were regarded as the crucial forces. CONCLUSION These findings showed that the interaction of astragaloside IV and calycosin with HMGB1 impaired its proinflammatory cytokines function, providing a new perspective for understanding the mechanism of A. membranaceus in treating aseptic and infectious diseases.
Collapse
Affiliation(s)
- Junyi Ye
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yong Huang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Chaofeng Zhang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24# St. Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
8
|
Song Z, Chen D, Sui S, Wang Y, Cen S, Dai J. Characterization of a Malabaricane-Type Triterpene Synthase from Astragalus membranaceus and Enzymatic Synthesis of Astramalabaricosides. JOURNAL OF NATURAL PRODUCTS 2023. [PMID: 37336771 DOI: 10.1021/acs.jnatprod.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Triterpenoids are a large and medicinally important group of natural products with a wide range of biological and pharmacological effects. Among them, malabaricane-type triterpenoids are a rare group of terpenoids with a 6,6,5-tricyclic ring system, and a few malabaricane triterpene synthases have been characterized to date. Here, an arabidiol synthase AmAS for the formation of the malabaricane-type 6,6,5-tricyclic triterpenoid skeleton in astramalabaricosides biosynthesis was characterized from Astragalus membranaceus. Multiple sequence alignment, site-directed mutagenesis, and molecular docking of AmAS reveal that residues Q256 and Y258 are essential for AmAS activity, and the triad motif IIH725-727 was the critical residue necessary for its product specificity. Mutation of IIH725-727 with VFN led to the formation of seven tricyclic, tetracyclic, and pentacyclic triterpenoids (1-7). Glycosylation of malabaricane-type triterpenoids in the biosynthesis of astramalabaricosides was also explored. Three triterpenoids (1, 5, and 6) displayed potent inhibitory effects against influenza A virus in vitro. These findings provide insights into malabaricane-type triterpenoids biosynthesis in A. membranaceus and access to diverse bioactive triterpenoids for drug discovery.
Collapse
Affiliation(s)
- Zhijun Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|