1
|
Chen Z, Lv Y, Luo Z, Hong B, Niu S. DMOA-derived polycyclic meroterpenoids with antiviral activities from the deep-sea-derived fungus Penicillium pancosmium A6A. Fitoterapia 2024; 179:106248. [PMID: 39395695 DOI: 10.1016/j.fitote.2024.106248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Two undescribed 3,5-dimethylorsellinic acid (DMOA) derived meroterpenoids, namely pancosterpenoids A (1) and B (2), were discovered from the EtOAc extract of the deep-sea sediment-derived fungus Penicillium pancosmium A6A. The gross structures were established by detailed analysis of the spectroscopic data (NMR and HRESIMS spectra), while their absolute configurations were resolved by comparing the experimental and calculated ECD data as well as X-ray single crystal diffraction analysis. Pancosterpenoid A (1) was the first representative of DMOA-derived meroterpenoids possessing a 6/6/6/5/5 pentacyclic system, while pancosterpenoid B (2) belongs to a class of rare 13-nor-citreohybridone meroterpenoids. Two metabolites were evaluated the antiviral effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) trVLP pseudovirus. As a result, compounds 1 and 2 showed moderately inhibitory activities with IC50 values of 22.37 and 18.12 μM, respectively.
Collapse
Affiliation(s)
- Ziming Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China; School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, People's Republic of China
| | - Yinghui Lv
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Zhuhua Luo
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Bihong Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Siwen Niu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, People's Republic of China.
| |
Collapse
|
2
|
Ren M, Li Z, Wang Z, Han W, Wang F, Li Y, Zhang W, Liu X, Zhang J, Luo DQ. Antiviral Chlorinated Drimane Meroterpenoids from the Fungus Talaromyces pinophilus LD-7 and Their Biosynthetic Pathway. JOURNAL OF NATURAL PRODUCTS 2024; 87:2034-2044. [PMID: 39126395 DOI: 10.1021/acs.jnatprod.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Ten new drimane meroterpenoids talarines A-J (1-10), along with six known analogues (11-16), were isolated from desert soil-derived fungus Talaromyces pinophilus LD-7. Their 2D structures were elucidated by comprehensive interpretation of NMR and HRESIMS data. Electronic circular dichroism calculation was used to establish their absolute configurations. Compounds 2, 10, and 11 showed antiviral activities toward vesicular stomatitis virus with IC50 values of 18, 15, and 23 nM, respectively. The structure-bioactivity relationship indicated that chlorine substitution at C-5 contributed greatly to their antiviral activities. Finally, we identified a new halogenase outside the biosynthetic gene cluster, which was responsible for C-5 halogenation of the precursor isocoumarin 17 as a tailoring step in chlorinated meroterpenoids assembly.
Collapse
Affiliation(s)
- Meng Ren
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China
| | - Zhuang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zixuan Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjie Han
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fengxiao Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yu Li
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenrong Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Jun Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China
| | - Du-Qiang Luo
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Shi Y, Ji M, Dong J, Shi D, Wang Y, Liu L, Feng S, Liu L. New bioactive secondary metabolites from fungi: 2023. Mycology 2024; 15:283-321. [PMID: 39247896 PMCID: PMC11376311 DOI: 10.1080/21501203.2024.2354302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 09/10/2024] Open
Abstract
Fungi have been identified as a prolific source of structurally unique secondary metabolites, many of which display promising biological and pharmacological properties. This review provides an overview of the structures of new natural products derived from fungi and their biological activities along with the research strategies, which focuses on literature published in the representative journals in 2023. In this review, a total of 553 natural products including 219 polyketides, 145 terpenoids, 35 steroids, 106 alkaloids, and 48 peptides are presented. By summarising the latest findings, this review aims to provide a guide and inspire further innovation in the fields of the discovery of fungal natural products and pharmaceutical development.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yitong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Longhui Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Feng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Shao F, Shen Q, Yang Z, Yang W, Lu Z, Zheng J, Zhang L, Li H. Research Progress of Natural Active Substances with Immunosuppressive Activity. Molecules 2024; 29:2359. [PMID: 38792220 PMCID: PMC11124018 DOI: 10.3390/molecules29102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The increasing prevalence of autoimmune diseases globally has prompted extensive research and the development of immunosuppressants. Currently, immunosuppressive drugs such as cyclosporine, rapamycin, and tacrolimus have been utilized in clinical practice. However, long-term use of these drugs may lead to a series of adverse effects. Therefore, there is an urgent need to explore novel drug candidates for treating autoimmune diseases. This review aims to find potential candidate molecules for natural immunosuppressive compounds derived from plants, animals, and fungi over the past decade. These compounds include terpenoids, alkaloids, phenolic compounds, flavonoids, and others. Among them, compounds 49, 151, 173, 200, 204, and 247 have excellent activity; their IC50 were less than 1 μM. A total of 109 compounds have good immunosuppressive activity, with IC50 ranging from 1 to 10 μM. These active compounds have high medicinal potential. The names, sources, structures, immunosuppressive activity, and the structure-activity relationship were summarized and analyzed.
Collapse
Affiliation(s)
- Fei Shao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Qiying Shen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Zhengfei Yang
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Wenqian Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Zixiang Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Jie Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Liming Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
| | - Hangying Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (F.S.)
- Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
5
|
Chang JL, Gan YT, Zhou YH, Peng XG, Xie ZY, Meng X, Li SM, Ruan HL. Asperustins A-J: Austocystins with Immunosuppressive and Cytotoxic Activities from Aspergillus ustus NRRL 5856. JOURNAL OF NATURAL PRODUCTS 2024; 87:966-975. [PMID: 38441877 DOI: 10.1021/acs.jnatprod.3c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Ten new (1-10) and nine known (11-19) austocystins, along with four known anthraquinones (20-23), were isolated from the culture of Aspergillus ustus NRRL 5856 by bioactivity-guided fractionation. The structures of the new compounds were elucidated by spectroscopic data analysis, X-ray crystallographic study, the modified Mosher's method, [Rh2(OCOCF3)4]-induced ECD spectral analysis, and comparison of the experimental ECD spectra with those of the similar analogues. Compounds 1-8 represent the first examples of austocystins with a C-4' oxygenated substitution. The absolute configuration of 1″-hydroxy austocystin D (11) was determined by single-crystal X-ray diffraction and consideration of its biosynthetic origin. Compounds 5, 9, and 11 exhibited significant inhibitory effects against the proliferation of ConA-induced T cells with IC50 values of 1.1, 1.0, and 0.93 μM, respectively. Furthermore, these compounds suppressed the expression of IL-6 in a dose-dependent manner. Compounds 10-12 and 14 showed pronounced cytotoxicities against MCF-7 with IC50 values of 3.9, 1.3, 0.46, and 2.3 μM, respectively.
Collapse
Affiliation(s)
- Jin-Ling Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Yu-Tian Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang 441000, People's Republic of China
| | - Yin-Hui Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Xiao-Gang Peng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Zuo-Ye Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Han-Li Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| |
Collapse
|
6
|
Chang JL, Pei J, Zhou YH, Ouyang QX, Qin CL, Hu JY, Meng XG, Ruan HL. Diaporaustalides A-L, Austalide Meroterpenoids from a Plant Endophytic Diaporthe sp. JOURNAL OF NATURAL PRODUCTS 2024; 87:141-151. [PMID: 38128907 DOI: 10.1021/acs.jnatprod.3c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Twelve new austalide meroterpenoids (1-12) were isolated from the endophytic fungus Diaporthe sp. XC1211. Their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of compounds 1, 3, 4, and 6 were established by single-crystal X-ray diffraction, whereas those for the others were established by experimental electronic circular dichroism (ECD) data analysis. Compounds 1-12 represent a rare class of austalides with a 24α-CH3. Compounds 2 and 5 demonstrated potent proliferation inhibitory effects against LPS-induced B cells with IC50 values of 6.7 (SI = 3.6) and 3.8 (SI > 13) μM, respectively. Compounds 2 and 5 decreased the secretion of IL-6 in LPS-induced B cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Jin-Ling Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Jiao Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Yin-Hui Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Qian-Xi Ouyang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Chun-Lun Qin
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Jia-Yun Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| | - Xiang-Gao Meng
- College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Han-Li Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, People's Republic of China
| |
Collapse
|
7
|
Chang J, Ouyang Q, Peng X, Pei J, Zhang L, Gan Y, Ruan H. Peniandrastins A-H: Andrastin-type meroterpenoids with immunosuppressive activity from a Penicillium sp. Bioorg Chem 2023; 139:106745. [PMID: 37499531 DOI: 10.1016/j.bioorg.2023.106745] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Eight unreported andrastin-type meroterpenoids, namely peniandrastins A-H (1-8), along with six known analogues (9-14), were isolated from the fermentation of a soil-derived fungus Penicillium sp.sb62. Their structures with absolute configurations were elucidated by detailed analyses of the spectroscopic data and single-crystal X-ray diffraction. Compounds 1-4 belong to a rare class of 21-nor-andrastin meroterpenoids, of which 1 bears a 10-hydroperoxyl group, and 2 and 3 feature a 6/6/6/5/5 and a 6/6/6/5/6 pentacyclic systems, respectively. Compounds 5-8 are C25 andrastin-type meroterpenoids, wherein 5 features an unprecedented cyclopentan-1-keton-3-hemiacetal moiety. Additionally, the absolute configuration of compound 9 was corroborated by single-crystal X-ray crystallography for the first time. All isolates were evaluated for their immunosuppressive activities. As a result, compounds 1, 3, 4, 7-9 and 12-14 inhibited concanavalin A-induced T cell proliferation with IC50 values ranging from 7.49 to 36.52 μM, and 1-4, 6-9 and 12-14 inhibited lipopolysaccharide-induced B cell proliferation with IC50 values ranging from 6.73 to 26.27 μM. The preliminary structure-activity relationships (SARs) of those isolates were also discussed.
Collapse
Affiliation(s)
- Jinling Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Qianxi Ouyang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Xiaogang Peng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Jiao Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Linlin Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China; Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yutian Gan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China
| | - Hanli Ruan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan 430030, China.
| |
Collapse
|