1
|
Zhu Q, Li Y, Wang C, Yu J, Yue J, Zhou B. Cytotoxic diterpenoids from Croton kongensis inhibiting tumor proliferation and migration. Bioorg Chem 2024; 152:107739. [PMID: 39186915 DOI: 10.1016/j.bioorg.2024.107739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
Thirty-two diterpenoids including 18 ent-kauranes (1-6, and 12-23), nine 8,9-seco-ent-kauranes (7-8, and 24-30), four ent-abietanes (9-10, and 31-32), and one crotofolane (11) were isolated from the twigs and leaves of Croton kongensis. The structures of previously unreported crokokaugenoids A-H (1-8), crokoabiegenoids A-B (9-10), and crokocrotogenoid A (11) were determined by spectroscopic data analyses, TDDFT-ECD and GIAO NMR calculations, and X-ray crystallographic studies. All compounds were evaluated for their cytotoxic activity against five human tumor cell lines, and the structure-activity relationships were discussed. Biological tests exhibited that compound 1 possessed strong anti-proliferation activity, arrested cell cycle at G2/M phase, and induced cell apoptosis of MDA-MB-231. The mechanism investigation showed that compound 1 can inhibit tumor proliferation and migration by targeting mitochondria to increase intracellular reactive oxygen species (ROS) and regulating STAT3 and FAK signal pathways. Collectively, these findings supported the great potential of compound 1 as a hopeful anticancer agent.
Collapse
Affiliation(s)
- Qiong Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, Republic of China
| | - Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, Republic of China
| | - Chenglei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, Republic of China
| | - Jinhai Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, Republic of China.
| | - Jianmin Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, Republic of China.
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, Republic of China.
| |
Collapse
|
2
|
Addae-Mensah I, Dziwornu GA, Chama MA, Osei-Safo D. The dichapetalins and dichapetalin-type compounds: structural diversity, bioactivity, and future research perspectives. Nat Prod Rep 2024; 41:1579-1603. [PMID: 38963155 DOI: 10.1039/d3np00039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Covering mainly from 2013 up to 2023 with relevant references to work done before 2013First reported in 1995, the dichapetalins and analogous compounds constitute a novel class of natural dammarane-type merotriterpenoids characterized by their unique 2-phenylpyrano moiety annellated to ring A of the dammarane skeleton. They have been reported from only two genera: Dichapetalum (Dichapetalaceae) and Phyllanthus (Phyllanthaceae). About 100 novel dichapetalins and dichapetalin-type compounds, including the acutissimatriterpenes and their antitumour and other bioactivities have been reported. In the present review, we cover the distribution, ethnobotanical and medicinal importance and the diversity of secondary metabolites reported from the two genera Dichapetalum and Phyllanthus from 2013 to date, with appropriate reference to relevant information prior to 2013. We also propose and discuss possible biosynthetic pathways, antitumour activity against a broad range of human and murine cancer cell lines, structure activity relationships, and other biological activities and mechanisms of action. Finally, the review deals with future perspectives which include expansion of the structural diversity and bioactivity scope, possible simplification of the structural complexity of the compounds to enhance their drug-likeness, in silico studies, and continuation of the search for new dichapetalins and dichapetalin-type compounds from the over 200 Dichapetalum and over 1200 Phyllanthus species yet to be investigated. It is envisaged that the present review will stimulate further multidisciplinary and interdisciplinary studies.
Collapse
Affiliation(s)
| | - Godwin Akpeko Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Mary Anti Chama
- Department of Chemistry, University of Ghana, Legon, Accra, Ghana.
| | - Dorcas Osei-Safo
- Department of Chemistry, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
3
|
An PP, Huang H, Ru SJ, Gao Y, Ren YH, Gao K, Zhou H, Zhou B, Yue JM. Intriguing steroid glycosides for cancer therapy by suppressing the DNA damage response and mTOR/S6K signaling pathways. Bioorg Chem 2024; 151:107619. [PMID: 39024806 DOI: 10.1016/j.bioorg.2024.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Two rare 8-hydroxysteroid glycosides (6-7), and their downstream metabolites (1-5) with an unprecedented 6/6/5/5/5-pentacyclic scaffold, together with seven known analogues (8-14) were isolated from the twigs and leaves of Strophanthus divaricatus. Their structures were fully assigned by analysis of the spectroscopic and ECD data, NMR calculations, X-ray crystallographic study, and chemical methods. In addition, the inhibitory effects of 1-14 on liver and lung cancer cell lines were evaluated, and preliminary structure-activity relationship was discussed. Data-independent acquisition (DIA)-based quantitative proteomic analysis and biological verification of H1299 cells suggested that this family of compounds may play an anticancer role by suppressing both DNA damage response (DDR) and mTOR/S6K signaling pathways.
Collapse
Affiliation(s)
- Pei-Pei An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Su-Jie Ru
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Hao Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jian-Min Yue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
4
|
Xie ZX, Cui YS, Liu XH, Yao JY, He SJ, Zhou B, Yue JM. Sesquiterpenoids and Cytochalasins with Immunosuppressive Activity from Sonchus wightianus. Chem Biodivers 2024; 21:e202400256. [PMID: 38361228 DOI: 10.1002/cbdv.202400256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
The plant species, Sonchus wightianus DC., was historically used in China for both medicinal and dietary uses. In present study, seven new guaiane sesquiterpenoids (1-7) and one cytochalasin (8), along with five known guaianes (9-13) and two known cytochalasins (14 and 15), were isolated from the whole plants of S. wightianus. These guaianes showed structural variations in the substituents at C-8 and/or C-15, and compounds 6 and 7 are two sesquiterpenoid glycoside derivatives. Their structures were determined by extensive analysis of spectroscopic, electronic circular dichroism, and X-ray diffraction data, and chemical method. Biological tests revealed that compounds 5 and 8 are potent and selective immunosuppressive reagents.
Collapse
Affiliation(s)
- Zhi-Xiang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Yong-Sheng Cui
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Xi-Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Jia-Ying Yao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, P. R. China
| | - Shi-Jun He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, P. R. China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 xianlin Road, Nanjing, 210023, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| |
Collapse
|
5
|
Carcache de Blanco EJ, Addo EM, Rakotondraibe HL, Soejarto DD, Kinghorn AD. Strategies for the discovery of potential anticancer agents from plants collected from Southeast Asian tropical rainforests as a case study. Nat Prod Rep 2023; 40:1181-1197. [PMID: 37194649 PMCID: PMC10524867 DOI: 10.1039/d2np00080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Covering up to early 2023The present review summarizes recent accomplishments made as part of a multidisciplinary, multi-institutional anticancer drug discovery project, wherein samples comprising higher plants were collected primarily from Southeast Asia, and also from Central America, and the West Indies. In the introductory paragraphs, a short perspective is provided on the current importance of plants in the discovery of cancer therapeutic agents, and the contributions of other groups working towards this objective are mentioned. For our own investigations, following their collection, tropical plants have been subjected to solvent extraction and biological evaluation for their antitumor potential. Several examples of purified plant lead bioactive compounds were obtained and characterized, and found to exhibit diverse structures, including those of the alkaloid, cardiac glycoside, coumarin, cucurbitacin, cyclobenzofuran (rocaglate), flavonoid, lignan, and terpenoid types. In order to maximize the efficiency of work on drug discovery from tropical plant species, strategies to optimize various research components have been developed, including those for the plant collections and taxonomic identification, in accordance with the requirements of contemporary international treaties and with a focus on species conservation. A major component of this aspect of the work is the development of collaborative research agreements with representatives of the source countries of tropical rainforest plants. The phytochemical aspects have included the preparation of plant extracts for initial screening and the selection of promising extracts for activity-guided fractionation. In an attempt to facilitate this process, a TOCSY-based NMR procedure has been applied for the determination of bioactive rocaglate derivatives in samples of Aglaia species (Meliaceae) collected for the project. Preliminary in vitro and in vivo mechanistic studies carried out by the authors are described for two tropical plant-derived bioactive lead compounds, corchorusoside C and (+)-betulin, including work conducted with a zebrafish (Danio rerio) model. In the concluding remarks, a number of lessons are summarized that our group has learned as a result of working on anticancer drug discovery using tropical plants, which we hope will be of interest to future workers.
Collapse
Affiliation(s)
- Esperanza J Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - H Liva Rakotondraibe
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Djaja D Soejarto
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
- Science and Education, Field Museum, Chicago, IL 60605, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|