1
|
Shi Y, Ji M, Dong J, Shi D, Wang Y, Liu L, Feng S, Liu L. New bioactive secondary metabolites from fungi: 2023. Mycology 2024; 15:283-321. [PMID: 39247896 PMCID: PMC11376311 DOI: 10.1080/21501203.2024.2354302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 09/10/2024] Open
Abstract
Fungi have been identified as a prolific source of structurally unique secondary metabolites, many of which display promising biological and pharmacological properties. This review provides an overview of the structures of new natural products derived from fungi and their biological activities along with the research strategies, which focuses on literature published in the representative journals in 2023. In this review, a total of 553 natural products including 219 polyketides, 145 terpenoids, 35 steroids, 106 alkaloids, and 48 peptides are presented. By summarising the latest findings, this review aims to provide a guide and inspire further innovation in the fields of the discovery of fungal natural products and pharmaceutical development.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yitong Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Longhui Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Feng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Hu X, Chen T, Guo P, Wang Q, Ding A, Qin G, Wang W, Xuan L. Amide alkaloids and neolignans from Piper hongkongense and their inhibitory activities of PCSK9 expression. Fitoterapia 2024; 175:105951. [PMID: 38583637 DOI: 10.1016/j.fitote.2024.105951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Four undescribed amide alkaloids hongkongensines A-C and 1-(1-oxo-6-hydroxy-2E,4E-dodecadienyl)-piperidine, five known amide alkaloids, and three known neolignans were isolated from the aerial part of Piper hongkongense. The planar structures of these compounds were determined by detailed analyses of HR-ESI-MS and NMR data. The absolute configurations of hongkongensines A-C were elucidated by single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory activities of PCSK9 expression in vitro for all compounds were assessed by PCSK9 AlphaLISA screening. Kadsurenone (10) displayed a significant inhibitory activity at 5 μM with an inhibition rate of 51.98%, compared with 55.55% of berberine (BBR 5 μM).
Collapse
Affiliation(s)
- Xianggang Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Tong Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Pengju Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qing Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Aoxue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Guoqing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Wenqiong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Lijiang Xuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
3
|
Gribble GW. A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds. JOURNAL OF NATURAL PRODUCTS 2024; 87:1285-1305. [PMID: 38375796 DOI: 10.1021/acs.jnatprod.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|