1
|
Singh A, Kaliappan KP. Asymmetric Total Synthesis of 4-Hydroxy-8- O-methyltetrangomycin, 4-Hydroxytetrangomycin, and 4-Keto-8- O-methyltetrangomycin. J Org Chem 2024; 89:10965-10973. [PMID: 39037742 DOI: 10.1021/acs.joc.4c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Herein, we report the first asymmetric total synthesis of 4-hydroxy-8-O-methyltetrangomycin (1), 4-hydroxytetrangomycin (2), and 4-keto-8-O-methyltetrangomycin (3), angucyclinones featuring a highly oxidized nonaromatic A ring. A sequential enyne metathesis/Diels-Alder approach was utilized successfully to construct the tetracyclic skeleton of the angucyclinones. Late-stage acetonide deprotection challenges were overcome by A ring functional group manipulation, yielding a dihydroxy intermediate prior to the benzylic photo-oxidation, facilitating the total syntheses of angucyclinones 1-3. The key stereocenter was established through a known Sharpless asymmetric epoxidation/regioselective epoxide opening reaction.
Collapse
Affiliation(s)
- Ajad Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Nuutila A, Xiao X, van der Heul HU, van Wezel GP, Dinis P, Elsayed SS, Metsä-Ketelä M. Divergence of Classical and C-Ring-Cleaved Angucyclines: Elucidation of Early Tailoring Steps in Lugdunomycin and Thioangucycline Biosynthesis. ACS Chem Biol 2024; 19:1131-1141. [PMID: 38668630 PMCID: PMC11106748 DOI: 10.1021/acschembio.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Angucyclines are an important group of microbial natural products that display tremendous chemical diversity. Classical angucyclines are composed of a tetracyclic benz[a]anthracene scaffold with one ring attached at an angular orientation. However, in atypical angucyclines, the polyaromatic aglycone is cleaved at A-, B-, or C-rings, leading to structural rearrangements and enabling further chemical variety. Here, we have elucidated the branching points in angucycline biosynthesis leading toward cleavage of the C-ring in lugdunomycin and thioangucycline biosynthesis. We showed that 12-hydroxylation and 6-ketoreduction of UWM6 are shared steps in classical and C-ring-cleaved angucycline pathways, although the bifunctional 6-ketoreductase LugOIIred harbors additional unique 1-ketoreductase activity. We identified formation of the key intermediate 8-O-methyltetrangomycin by the LugN methyltransferase as the branching point toward C-ring-cleaved angucyclines. The final common step in lugdunomycin and thioangucycline biosynthesis is quinone reduction, catalyzed by the 7-ketoreductases LugG and TacO, respectively. In turn, the committing step toward thioangucyclines is 12-ketoreduction catalyzed by TacA, for which no orthologous protein exists on the lugdunomycin pathway. Our results confirm that quinone reductions are early tailoring steps and, therefore, may be mechanistically important for subsequent C-ring cleavage. Finally, many of the tailoring enzymes harbored broad substrate promiscuity, which we utilized in combinatorial enzymatic syntheses to generate the angucyclines SM 196 A and hydranthomycin. We propose that enzyme promiscuity and the competition of many of the enzymes for the same substrates lead to a branching biosynthetic network and formation of numerous shunt products typical for angucyclines rather than a canonical linear metabolic pathway.
Collapse
Affiliation(s)
- Aleksi Nuutila
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| | - Xiansha Xiao
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Helga U. van der Heul
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Pedro Dinis
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| | - Somayah S. Elsayed
- Molecular
Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The
Netherlands
| | - Mikko Metsä-Ketelä
- Department
of Life Technologies, University of Turku, FIN20014 Turku, Finland
| |
Collapse
|
3
|
Elsayed SS, van der Heul HU, Xiao X, Nuutila A, Baars LR, Wu C, Metsä-Ketelä M, van Wezel GP. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Commun Chem 2023; 6:281. [PMID: 38110491 PMCID: PMC10728087 DOI: 10.1038/s42004-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Helga U van der Heul
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Laura R Baars
- Department of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237, Qingdao, P.R. China
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Tau-aggregation inhibitors derived from Streptomyces tendae MCCC 1A01534 protect HT22 cells against okadaic acid-induced damage. Int J Biol Macromol 2023; 231:123170. [PMID: 36621732 DOI: 10.1016/j.ijbiomac.2023.123170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by tau aggregating into neurofibrillary tangles. Targeting tau aggregation is one of the most critical strategies for AD treatment and prevention. Herein, a high-throughput screening of tau-aggregation inhibitors was performed by thioflavin T (ThT) fluorescence assay and tauR3 peptides. According to bioactivity-guided isolation, homoprejadomycin (1) was obtained from the marine bacterium Streptomyces tendae MCCC 1A01534. Two new stable derivatives, 2 and 3, were yielded in a one-step reaction. By ThT assay, transmission electron microscopy, and circular dichroism, we demonstrated that the angucyclinones 2 and 3 inhibited tau aggregation and disaggregated tau fibrils. In the presence of 2, native tauR3 peptides maintained the disorder conformation, whereas the tauR3 aggregates reduced β-sheet structures. And compound 2 was confirmed to inhibit the aggregation of full-length 2N4R tau protein. Furthermore, 2 with low cytotoxicity protected HT22 cells from okadaic acid-induced damage by suppressing tau aggregates. These results indicated that 2 was a promising lead structure with tau therapeutic potency for AD treatment.
Collapse
|
5
|
Fu XZ, Zhang SM, Wang GF, Yang QL, Guo L, Pescitelli G, Xie ZP. Atypical Angucyclinones with Ring Expansion and Cleavage from a Marine Streptomyces sp. J Org Chem 2022; 87:15998-16010. [PMID: 36395479 DOI: 10.1021/acs.joc.2c02134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique ring C-expanded angucyclinone, oxemycin A (1), and seven new ring-cleavage derivatives (2-5 and 9-11) were isolated from the marine actinomycete Streptomyces pratensis KCB-132, together with eight known analogues (6-8 and 12-16). Their structures were elucidated by spectroscopic analyses, single-crystal X-ray diffractions, and NMR and ECD calculations. Among these atypical angucyclinones, compound 1 represented the first seven-membered ketoester in the angucyclinone family, which sheds light on the origin of fragmented angucyclinones with C-ring cleavage at C-12/C-12a in the Baeyer-Villiger hypothesis, such as 2-4, while the related "nonoxidized" analogues 5-8 seem to originate from a diverse pathway within the Grob fragmentation hypothesis. Additionally, we have succeeded in the challenging separation of elmenols E and F (12) into their four stereoisomers, which remained stable in aprotic solvents but rapidly racemized under protic conditions. Furthermore, the absolute configurations of LS1924 and its isomers (14 and 15) were assigned by ECD calculations for the first time. Surprisingly, these two bicyclic acetals are susceptible to hydrolysis in solution, resulting in fragmented derivatives 17 and 18 with C-ring cleavage between C-6a and C-7. Compared with ring C-modified angucyclinones, ring A-cleaved 11 was more active to multiple resistant "ESKAPE" pathogens with MIC values ranging from 4.7 to 37.5 μg/mL.
Collapse
Affiliation(s)
- Xin-Zhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shu-Min Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Guang-Fei Wang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Qiao-Li Yang
- College of Life Sciences, Yantai University, Yantai 264003, China
| | - Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Ze-Ping Xie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
6
|
Marine Actinobacteria a New Source of Antibacterial Metabolites to Treat Acne Vulgaris Disease—A Systematic Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11070965. [PMID: 35884220 PMCID: PMC9311749 DOI: 10.3390/antibiotics11070965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Acne vulgaris is a multifactorial disease that remains under-explored; up to date it is known that the bacterium Cutibacterium acnes is involved in the disease occurrence, also associated with a microbial dysbiosis. Antibiotics have become a mainstay treatment generating the emergence of antibiotic-resistant bacteria. In addition, there are some reported side effects of alternative treatments, which indicate the need to investigate a different therapeutic approach. Natural products continue to be an excellent option, especially those extracted from actinobacteria, which represent a prominent source of metabolites with a wide range of biological activities, particularly the marine actinobacteria, which have been less studied than their terrestrial counterparts. Therefore, this systematic review aimed to identify and evaluate the potential anti-infective activity of metabolites isolated from marine actinobacteria strains against bacteria related to the development of acne vulgaris disease. It was found that there is a variety of compounds with anti-infective activity against Staphylococcus aureus and Staphylococcus epidermidis, bacteria closely related to acne vulgaris development; nevertheless, there is no report of a compound with antibacterial activity or quorum-sensing inhibition toward C. acnes, which is a surprising result. Since two of the most widely used antibiotics for the treatment of acne targeting C. acnes were obtained from actinobacteria of the genus Streptomyces, this demonstrates a great opportunity to pursue further studies in this field, considering the potential of marine actinobacteria to produce new anti-infective compounds.
Collapse
|
7
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
8
|
Ali S, Rani A, Khan S. Manganese-Catalyzed C-H Functionalizations Driven via Weak Coordination: Recent Developments and Perspectives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Shen Q, Dai G, Li A, Liu Y, Zhong G, Li X, Ren X, Sui H, Fu J, Jiao N, Zhang Y, Bian X, Zhou H. Genome-Guided Discovery of Highly Oxygenated Aromatic Polyketides, Saccharothrixins D-M, from the Rare Marine Actinomycete Saccharothrix sp. D09. JOURNAL OF NATURAL PRODUCTS 2021; 84:2875-2884. [PMID: 34784196 DOI: 10.1021/acs.jnatprod.1c00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Angucyclines and angucyclinones are aromatic polyketides with intriguing structures and therapeutic value. Genome mining of the rare marine actinomycete Saccharothrix sp. D09 led to the identification of a type II polyketide synthase biosynthetic gene cluster, sxn, which encodes several distinct subclasses of oxidoreductases, implying that this strain has the potential to produce novel polycyclic aromatic polyketides with unusual redox modifications. The "one strain-many compounds" (OSMAC) strategy and comparative metabolite analysis facilitated the discovery of 20 angucycline derivatives from the D09 strain, including six new highly oxygenated saccharothrixins D-I (1-6), four new glycosylated saccharothrixins J-M (7-10), and 10 known analogues (11-20). Their structures were elucidated based on detailed HRESIMS, NMR spectroscopic, and X-ray crystallographic analysis. With the help of gene disruption and heterologous expression, we proposed their plausible biosynthetic pathways. In addition, compounds 3, 4, and 8 showed antibacterial activity against Helicobacter pylori with MIC values ranging from 16 to 32 μg/mL. Compound 3 also revealed anti-inflammatory activity by inhibiting the production of NO with an IC50 value of 28 μM.
Collapse
Affiliation(s)
- Qiyao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yang Liu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoju Li
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangmei Ren
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Sui
- Core Facilities for Life and Environmental Sciences, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jun Fu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nianzhi Jiao
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Liu M, Yang YJ, Gong G, Li Z, Zhang L, Guo L, Xu B, Zhang SM, Xie ZP. Angucycline and angucyclinone derivatives from the marine-derived Streptomyces sp. Chirality 2021; 34:421-427. [PMID: 34806785 DOI: 10.1002/chir.23394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022]
Abstract
Atramycin C (1), one new angucycline bearing an O-6 rhamnose side chain, along with one new highly hydroxylated angucyclinone emycin G (2), and ten known analogs (3-12) were isolated from the marine-derived Streptomyces sp. strain BHB-032. Their structures were assigned by spectroscopic analysis and comparison with literature data. The absolute configuration of the sugar unit of 1 was assigned as 6-O-α-l-rhamnoside, based on the analysis of the coupling constants and chemical derivatization, whereas the absolute configuration of 2 was determined by X-ray diffraction. Furthermore, the stereochemistry of saccharothrixin A (3) and SNA-8073-A (4) was established unequivocally by X-ray crystallography for the first time. Compounds 1 and 2 exhibited moderate antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 16 to 64 μg/ml.
Collapse
Affiliation(s)
- Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | | | - Ge Gong
- College of Life Sciences, Yantai University, Yantai, China
| | - Zhi Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Bo Xu
- College of Life Sciences, Yantai University, Yantai, China
| | - Shu-Min Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ze-Ping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
11
|
Ikonnikova VA, Solyev PN, Terekhov SS, Alferova VA, Tyurin AP, Korshun VA, Baranov MS, Mikhaylov AA. Total Synthesis of Elmenols A and B and Related Rearranged Angucyclinones. ChemistrySelect 2021. [DOI: 10.1002/slct.202103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Viktoria A. Ikonnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences 16/10 Miklukho-Maklaya St. Moscow 117997 Russia
- Higher Chemical College Mendeleev University of Chemical Technology of Russia 9 Miusskaya sq. 125047 Moscow Russia
| | - Pavel N. Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences 32 Vavilova St. Moscow 119991 Russia
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences 16/10 Miklukho-Maklaya St. Moscow 117997 Russia
- Department of Chemistry Lomonosov Moscow State University, 1-3 Leninskiye Gory Moscow 119991 Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences 16/10 Miklukho-Maklaya St. Moscow 117997 Russia
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Moscow 119021 Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences 16/10 Miklukho-Maklaya St. Moscow 117997 Russia
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Moscow 119021 Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences 16/10 Miklukho-Maklaya St. Moscow 117997 Russia
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Moscow 119021 Russia
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences 16/10 Miklukho-Maklaya St. Moscow 117997 Russia
| | - Andrey A. Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences 16/10 Miklukho-Maklaya St. Moscow 117997 Russia
- National Research University Higher School of Economics Faculty of Chemistry 20 Myasnitskaya St. Moscow 101000 Russia
| |
Collapse
|
12
|
Guo L, Yang Q, Wang G, Zhang S, Liu M, Pan X, Pescitelli G, Xie Z. Ring D-Modified and Highly Reduced Angucyclinones From Marine Sediment-Derived Streptomyces sp. Front Chem 2021; 9:756962. [PMID: 34712650 PMCID: PMC8546756 DOI: 10.3389/fchem.2021.756962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
Angucyclines and angucyclinones represent the largest family of type II PKS-engineered natural products. Chemical analysis of a marine Streptomyces sp. KCB-132 yielded three new members, actetrophenone A (1) and actetrophenols A–B (2–3). Their structures were elucidated by NMR spectroscopy, X-ray crystallography and CD calculations. Actetrophenone A (1) is the first representative of a novel-type angucyclinone bearing a nonaromatic D-ring. Actetrophenol A (2) features a highly reduced and aromatized four-ring system, which is unprecedented for natural products. While (Ra)- and (Sa)-actetrophenol B (3) bear an unprecedented N-acetyltryptamine-substituted tetraphene core skeleton, this is the first report of a pair of atropisomeric isomers in the angucyclinone family. Actetrophenol A (2) exhibits remarkable antibiotic activity, notably including potent activity to multiple resistant Staphylococcus aureus and Enterococcus faecium with MIC values of 4 μg/ml, in contrast, the positive control antimicrobial agent penicillin was inactive up to 32 μg/ml.
Collapse
Affiliation(s)
- Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qiaoli Yang
- College of Life Sciences, Yantai University, Yantai, China
| | - Guangfei Wang
- College of Life Sciences, Yantai University, Yantai, China
| | - Shumin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
13
|
Xu Y, Xie J, Wu WC, Chen BT, Zhang SQ, Wang R, Huang J, Guo ZK. Discovery of an unprecedented benz[α]anthraquinone-type heterodimer from a rare actinomycete Amycolatopsis sp. HCa1. Fitoterapia 2021; 155:105039. [PMID: 34592372 DOI: 10.1016/j.fitote.2021.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The angucylines are a family of aromatic polyketides featuring a tetracyclic benz[a]anthraquinone skeleton. This class of polycyclic aromatic polyketides are exclusively associated with actinomycetes and can undergo many modifications such as oxidation, ring cleavage, glycosylation and dimerization. Here we report the discovery of a new ether-linked benz[a]anthraquinone heterodimer, named mycolatone (1), from a grasshopper-derived actinomycete, Amycolatopsis sp. HCa1. The structure of mycolatone (1) was determined by comprehensive two-dimensional NMR analysis, high-resolution electrospray ionization mass spectrometry and biogenetic consideration. This new heterodimeric molecule is structurally derived from the dimerization of two tetracyclic angucylines, 2-hydroxy-5-O-methyltetragomycin and PD116779, through an ether bond between C-8 and C-8'. This new structural feature enrich the structural diversity of angucylines. Additionally, the surface tension activity and cytotoxic activities of 1 against human cervical cancer cell line (Hela), human gastric adenocarcinoma cell line (SGC-7901) and human lung adenocarcinoma cell line (SPC-A-1) were evaluated.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, People's Republic of China
| | - Jing Xie
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, People's Republic of China
| | - Wei Cheng Wu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China; School of Forestry and Horticulture, Hubei Minzu University, Enshi 445000, People's Republic of China
| | - Bi Ting Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Shi Qing Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China
| | - Rong Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 570203, People's Republic of China
| | - Jia Huang
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, People's Republic of China
| | - Zhi Kai Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China; Hainan Academy of Tropical Agricultural Resource, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, People's Republic of China.
| |
Collapse
|
14
|
Zhang Y, Cheema MT, Ponomareva LV, Ye Q, Liu T, Sajid I, Rohr J, She QB, Voss SR, Thorson JS, Shaaban KA. Himalaquinones A-G, Angucyclinone-Derived Metabolites Produced by the Himalayan Isolate Streptomyces sp. PU-MM59. JOURNAL OF NATURAL PRODUCTS 2021; 84:1930-1940. [PMID: 34170698 PMCID: PMC8565601 DOI: 10.1021/acs.jnatprod.1c00192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Himalaquinones A-G, seven new anthraquinone-derived metabolites, were obtained from the Himalayan-based Streptomyces sp. PU-MM59. The chemical structures of the new compounds were identified based on cumulative analyses of HRESIMS and NMR spectra. Himalaquinones A-F were determined to be unique anthraquinones that contained unusual C-4a 3-methylbut-3-enoic acid aromatic substitutions, while himalaquinone G was identified as a new 5,6-dihydrodiol-bearing angucyclinone. Comparative bioactivity assessment (antimicrobial, cancer cell line cytotoxicity, impact on 4E-BP1 phosphorylation, and effect on axolotl embryo tail regeneration) revealed cytotoxic landomycin and saquayamycin analogues to inhibit 4E-BP1p and inhibit regeneration. In contrast, himalaquinone G, while also cytotoxic and a regeneration inhibitor, did not affect 4E-BP1p status at the doses tested. As such, this work implicates a unique mechanism for himalaquinone G and possibly other 5,6-dihydrodiol-bearing angucyclinones.
Collapse
Affiliation(s)
- Yongyong Zhang
- Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Mohsin T Cheema
- Institute of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore 54590, Pakistan
| | | | - Qing Ye
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Tao Liu
- Department of Natural Products Chemistry, School of Pharmacy, China Medical University, Shenyang 110122, People's Republic of China
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore 54590, Pakistan
| | | | - Qing-Bai She
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | | | | |
Collapse
|
15
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu YC, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021; 60:7140-7147. [PMID: 33465268 PMCID: PMC7969429 DOI: 10.1002/anie.202015570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Sulfur incorporation into natural products is a critical area of biosynthetic studies. Recently, a subset of sulfur-containing angucyclines has been discovered, and yet, the sulfur incorporation step is poorly understood. In this work, a series of thioether-bridged angucyclines were discovered, and a cryptic epoxide Michael acceptor intermediate was revealed en route to thioangucyclines (TACs) A and B. However, systematic gene deletion of the biosynthetic gene cluster (BGC) by CRISPR/Cas9 could not identify any gene responsible for the conversion of the epoxide intermediate to TACs. Instead, a series of in vitro and in vivo experiments conclusively showed that the conversion is the result of two non-enzymatic steps, possibly mediated by endogenous hydrogen sulfide. Therefore, the TACs are proposed to derive from a detoxification process. These results are expected to contribute to the study of both angucyclines and the utilization of inorganic sulfur in natural product biosynthesis.
Collapse
Affiliation(s)
| | | | - Dong Yang
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Edward Kalkreuter
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ajeeth Adhikari
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yu-Chen Liu
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Mostafa E. Rateb
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, Department of Molecular Medicine, Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, Florida 33458, United States
| |
Collapse
|
16
|
Cao M, Zheng C, Yang D, Kalkreuter E, Adhikari A, Liu Y, Rateb ME, Shen B. Cryptic Sulfur Incorporation in Thioangucycline Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingming Cao
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Chengjian Zheng
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Dong Yang
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Edward Kalkreuter
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ajeeth Adhikari
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Yu‐Chen Liu
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Mostafa E. Rateb
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| | - Ben Shen
- Department of Chemistry Department of Molecular Medicine Natural Products Discovery Center at Scripps Research The Scripps Research Institute Jupiter FL 33458 USA
| |
Collapse
|
17
|
Mikhaylov AA, Ikonnikova VA, Solyev PN. Disclosing biosynthetic connections and functions of atypical angucyclinones with a fragmented C-ring. Nat Prod Rep 2021; 38:1506-1517. [PMID: 33480893 DOI: 10.1039/d0np00082e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review on atypical angucyclinones possessing an aromatic cleavage of the C-ring covers literature between 1995 and early 2020.The unusual framework of the middle C-ring, "broken" as a result of biotransformations and oxidations in vivo and bearing an sp3-C connection, is of interest for biosynthetic investigations. The reported 39 natural compounds (55 including stereoisomers) have been analyzed and arranged into three structural groups. The biosynthetic origin of all these compounds has been thoroughly reviewed and revised, based on the found connections with oxidized angucyclinone structures. The data on biological activities has been summarized. Careful consideration of the origin of the structure allowed us to outline a hypothesis on the biological function as well as prospective applications of such atypical angucyclinones.
Collapse
Affiliation(s)
- Andrey A Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.
| | | | | |
Collapse
|
18
|
Guo L, Zhang L, Yang Q, Xu B, Fu X, Liu M, Li Z, Zhang S, Xie Z. Antibacterial and Cytotoxic Bridged and Ring Cleavage Angucyclinones From a Marine Streptomyces sp. Front Chem 2020; 8:586. [PMID: 32850626 PMCID: PMC7417440 DOI: 10.3389/fchem.2020.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
Chemical investigation of a marine-derived Streptomyces sp. KCB-132, cultivated in liquid ISP2 medium, had led to the discovery of three C-ring cleavage angucyclinone N-heterocycles, pratensilins A–C, with a novel spiro indolinone-naphthofuran skeleton. Addition of 50 μM LaCl3 to the same medium and subsequent chemical analysis of this strain returned a new member of this rare class, pratensilin D (1), along with two new angucyclinone derivatives, featuring ether-bridged (2) and A-ring cleavage (3) structural properties. Their structures and absolute configurations were assigned by spectroscopic analysis, single-crystal X-ray diffractions, and equivalent circulating density (ECD) calculations. (+)- and (–)-1, a pair of enantiomeric nitrogen-containing angucyclinones, exhibited different strengths of antibacterial and cytotoxic activities.
Collapse
Affiliation(s)
- Lin Guo
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Lu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qiaoli Yang
- College of Life Sciences, Yantai University, Yantai, China
| | - Bo Xu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xinzhen Fu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhi Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shumin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
19
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2020; 20:983-994. [PMID: 31749345 DOI: 10.1631/jzus.b1900344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-Yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
20
|
Bae M, An JS, Hong SH, Bae ES, Chung B, Kwon Y, Hong S, Oh KB, Shin J, Lee SK, Oh DC. Donghaecyclinones A-C: New Cytotoxic Rearranged Angucyclinones from a Volcanic Island-Derived Marine Streptomyces sp. Mar Drugs 2020; 18:md18020121. [PMID: 32085561 PMCID: PMC7073551 DOI: 10.3390/md18020121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Chemical profiling of the Streptomyces sp. strain SUD119, which was isolated from a marine sediment sample collected from a volcanic island in Korea, led to the discovery of three new metabolites: donghaecyclinones A–C (1–3). The structures of 1–3 were found to be rearranged, multicyclic, angucyclinone-class compounds according to nuclear magnetic resonance (NMR) and mass spectrometry (MS) analyses. The configurations of their stereogenic centers were successfully assigned using a combination of quantum mechanics–based computational methods for calculating the NMR shielding tensor (DP4 and CP3) as well as electronic circular dichroism (ECD) along with a modified version of Mosher’s method. Donghaecyclinones A–C (1–3) displayed cytotoxicity against diverse human cancer cell lines (IC50: 6.7–9.6 μM for 3).
Collapse
Affiliation(s)
- Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
| | - Seong-Heon Hong
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (K.-B.O.)
| | - Yun Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea;
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (K.-B.O.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (M.B.); (J.S.A.); (S.-H.H.); (E.S.B.); (Y.K.); (J.S.); (S.K.L.)
- Correspondence: ; Tel.: +82-2880-2491
| |
Collapse
|
21
|
Zhang S, Zhang L, Kou L, Yang Q, Qu B, Pescitelli G, Xie Z. Isolation, stereochemical study, and racemization of (±)‐pratenone A, the first naturally occurring 3‐(1‐naphthyl)‐2‐benzofuran‐1(3H)‐one polyketide from a marine‐derived actinobacterium. Chirality 2020; 32:299-307. [DOI: 10.1002/chir.23178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Shu‐Min Zhang
- School of PharmacyBinzhou Medical University Yantai China
| | - Lu Zhang
- School of PharmacyBinzhou Medical University Yantai China
| | - Li‐Juan Kou
- School of PharmacyBinzhou Medical University Yantai China
| | - Qiao‐Li Yang
- College of Life SciencesYantai University Yantai China
| | - Bo Qu
- College of Life SciencesYantai University Yantai China
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica IndustrialeUniversità di Pisa Pisa Italy
| | - Ze‐Ping Xie
- School of PharmacyBinzhou Medical University Yantai China
| |
Collapse
|
22
|
Wang L, Wang L, Zhou Z, Wang YJ, Huang JP, Ma YT, Liu Y, Huang SX. Cangumycins A-F, six new angucyclinone analogues with immunosuppressive activity from Streptomyces. Chin J Nat Med 2019; 17:982-987. [PMID: 31882054 DOI: 10.1016/s1875-5364(19)30121-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 10/25/2022]
Abstract
Cangumycins A-F (1-6), six new angucyclinone analogues, together with two known ones (7 and 8), were isolated from the fermentation broth of a soil-derived Streptomyces sp. KIB-M10. Structures of these compounds were elucidated via a joint use of spectroscopic analyses and single-crystal X-ray diffractions. Among them, cangumycins E (5) and F (6) share a C-ring cleaved backbone, and cangumycins B (2) and E (5) exhibit potent immunosuppressive activity (IC50 8.1 and 2.7 μmol·L-1, respectively) against human T cell proliferation at a non-cytotoxic concentration.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Research Center, Chengdu Medical College, Chengdu 610500, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Jiang Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ya-Tuan Ma
- College of Chemistry and Pharmacy, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Yang Liu
- Research Center, Chengdu Medical College, Chengdu 610500, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
23
|
Li ZY, Bu QT, Wang J, Liu Y, Chen XA, Mao XM, Li YQ. Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. J Zhejiang Univ Sci B 2019. [PMID: 31749345 PMCID: PMC6885405 DOI: 10.1631/jzus.b191900344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.
Collapse
Affiliation(s)
- Zi-yue Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qing-ting Bu
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Jue Wang
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-ai Chen
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Xu-ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China,†E-mail:
| |
Collapse
|
24
|
Chemical constituents of Streptomyces sp. strain Al-Dhabi-97 isolated from the marine region of Saudi Arabia with antibacterial and anticancer properties. J Infect Public Health 2019; 13:235-243. [PMID: 31585801 DOI: 10.1016/j.jiph.2019.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Unlike the terrestrial region, the microorganisms especially actinomycetes groups existing in the marine environment are important sources for the medically important drugs and other active compounds. Considering the importance of natural compounds from the marine actinomycetes, the present study proceeded to identify and characterize promising antibacterial and anticancer actinomycetes from the marine region of Saudi Arabia and to profile the individual chemical components. METHODS Antimicrobial, anticancer and chemical profiling were performed by broth microdilution, mitochondrial membrane potential assays and GC-MS analysis. Investigations were directed towards the isolation and characterization of active Streptomyces sp. strain Al-Dhabi-97. RESULTS The obtained results of the morphological, biochemical, physiological and molecular level studies of the isolate Al-Dhabi-97 showed similarity towards the species of Streptomyces. Gram positive bacteria such as Bacillus subtilis, Enterococcus faecalis, Staphylococcus epidermidis and Staphylococcus aureus showed MIC values of 500, 250, 125 and 62.5μg/ml and Gram negative bacteria such as Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli and Salmonella paratyphi reported MIC values of 500, 500, 250 and >250μg/ml in the antimicrobial studies. The results of anticancer studies showed that at 100μg/ml, the extract showed maximum cell growth inhibition and exhibited 2.5% necrosis, 62.2% late apoptosis and 20.8% early apoptosis in COLO 320 DM and VERO cell lines respectively. Chemical profiling of the extract authenticated the presence of constituents such as 1-phenanthrenemethanol (46.64%), phthalic acid, di(2-propylpentyl) ester (26.97%), benzenebutanoic acid (3.37%), podocarp-7-en-3-one (2.68%), and indole-3-carboxaldehyde (1.11%) respectively. CONCLUSION The present study concluded that Saudi Arabian marine region was a promising area for the identification of medically important natural products producing actinomycetes for antibacterial and anticancer drugs.
Collapse
|
25
|
Wu C, van der Heul HU, Melnik AV, Lübben J, Dorrestein PC, Minnaard AJ, Choi YH, van Wezel GP. Lugdunomycin, an Angucycline-Derived Molecule with Unprecedented Chemical Architecture. Angew Chem Int Ed Engl 2019; 58:2809-2814. [PMID: 30656821 PMCID: PMC6519343 DOI: 10.1002/anie.201814581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Indexed: 12/27/2022]
Abstract
The angucyclines form the largest family of polycyclic aromatic polyketides, and have been studied extensively. Herein, we report the discovery of lugdunomycin, an angucycline-derived polyketide, produced by Streptomyces species QL37. Lugdunomycin has unique structural characteristics, including a heptacyclic ring system, a spiroatom, two all-carbon stereocenters, and a benzaza-[4,3,3]propellane motif. Considering the structural novelty, we propose that lugdunomycin represents a novel subclass of aromatic polyketides. Metabolomics, combined with MS-based molecular networking analysis of Streptomyces sp. QL37, elucidated 24 other rearranged and non-rearranged angucyclines, 11 of which were previously undescribed. A biosynthetic route for the lugdunomycin and limamycins is also proposed. This work demonstrates that revisiting well-known compound families and their producer strains still is a promising approach for drug discovery.
Collapse
Affiliation(s)
- Changsheng Wu
- Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237P. R. China
| | | | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093-0751USA
| | - Jens Lübben
- Bruker AXS GmbHÖstliche Rheinbrückenstr. 4976187KarlsruheGermany
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego9500 Gilman DriveLa JollaCA92093-0751USA
| | - Adriaan J. Minnaard
- Stratingh Institute for ChemistryUniversity of GroningenGroningenThe Netherlands
| | - Young Hae Choi
- Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| | - Gilles P. van Wezel
- Institute of BiologyLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| |
Collapse
|
26
|
Wu C, van der Heul HU, Melnik AV, Lübben J, Dorrestein PC, Minnaard AJ, Choi YH, van Wezel GP. Lugdunomycin, an Angucycline‐Derived Molecule with Unprecedented Chemical Architecture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Changsheng Wu
- Institute of BiologyLeiden University Sylviusweg 72 2333 BE Leiden The Netherlands
- State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong University Qingdao 266237 P. R. China
| | | | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0751 USA
| | - Jens Lübben
- Bruker AXS GmbH Östliche Rheinbrückenstr. 49 76187 Karlsruhe Germany
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation CenterSkaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0751 USA
| | - Adriaan J. Minnaard
- Stratingh Institute for ChemistryUniversity of Groningen Groningen The Netherlands
| | - Young Hae Choi
- Institute of BiologyLeiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| | - Gilles P. van Wezel
- Institute of BiologyLeiden University Sylviusweg 72 2333 BE Leiden The Netherlands
| |
Collapse
|
27
|
Zhang S, Zhang L, Fu X, Li Z, Guo L, Kou L, Liu M, Xie Z. (+)- and (−)-actinoxocine, and actinaphthorans A–B, C-ring expansion and cleavage angucyclinones from a marine-derived Streptomyces sp. Org Chem Front 2019. [DOI: 10.1039/c9qo01154d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair of enantiomeric C-ring expansion angucyclinones with an unprecedented epoxybenzo[f]naphtho[1,8-bc]oxocine carbon skeleton, and two unique C-ring cleavage analogues, were isolated from a marine-derived Streptomyces sp.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Lu Zhang
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Xinzhen Fu
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Zhi Li
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Lin Guo
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Lijuan Kou
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Ming Liu
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| | - Zeping Xie
- School of Pharmacy
- Binzhou Medical University
- Yantai 264003
- China
| |
Collapse
|
28
|
Akhter N, Liu Y, Auckloo BN, Shi Y, Wang K, Chen J, Wu X, Wu B. Stress-Driven Discovery of New Angucycline-Type Antibiotics from a Marine Streptomyces pratensis NA-ZhouS1. Mar Drugs 2018; 16:E331. [PMID: 30213076 PMCID: PMC6163593 DOI: 10.3390/md16090331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023] Open
Abstract
Natural products from marine actinomycetes remain an important resource for drug discovery, many of which are produced by the genus, Streptomyces. However, in standard laboratory conditions, specific gene clusters in microbes have long been considered silent or covert. Thus, various stress techniques activated latent gene clusters leading to isolation of potential metabolites. This study focused on the analysis of two new angucycline antibiotics isolated from the culture filtrate of a marine Streptomyces pratensis strain NA-ZhouS1, named, stremycin A (1) and B (2) which were further determined based on spectroscopic techniques such as high resolution time of flight mass spectrometry (HR-TOF-MS), 1D, and 2D nuclear magnetic resonance (NMR) experiments. In addition, four other known compounds, namely, 2-[2-(3,5-dimethyl-2-oxo-cyclohexyl)-6-oxo-tetrahydro-pyran-4yl]-acetamide (3), cyclo[l-(4-hydroxyprolinyl)-l-leucine] (4), 2-methyl-3H-quinazoline-4-one (5), and menthane derivative, 3-(hydroxymethyl)-6-isopropyl-10,12-dioxatricyclo[7.2.1.0]dodec-4-en-8-one (6) were obtained and elucidated by means of 1D NMR spectrometry. Herein, we describe the "Metal Stress Technique" applied in the discovery of angucyclines, a distinctive class of antibiotics that are commonly encoded in microbiomes but have never been reported in "Metal Stress" based discovery efforts. Novel antibiotics 1 and 2 exhibited antimicrobial activities against Pseudomonas aeruginosa, methicillin resistant Staphylococcus aureus (MRSA), Klebsiella pneumonia, and Escherichia coli with equal minimum inhibitory concentration (MIC) values of 16 µg/mL, while these antibiotics showed inhibition against Bacillus subtilis at MIC value of approximately 8⁻16 µg/mL, respectively. As a result, the outcome of this investigation revealed that metal stress is an effective technique in unlocking the biosynthetic potential and resulting production of novel antibiotics.
Collapse
Affiliation(s)
- Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou 301000, China.
| | | | - Yutong Shi
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Kuiwu Wang
- Department of Chemistry, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo 315211, China.
| | - Xiaodan Wu
- Centre of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China.
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Jiang L, Pu H, Xiang J, Su M, Yan X, Yang D, Zhu X, Shen B, Duan Y, Huang Y. Huanglongmycin A-C, Cytotoxic Polyketides Biosynthesized by a Putative Type II Polyketide Synthase From Streptomyces sp. CB09001. Front Chem 2018; 6:254. [PMID: 30013965 PMCID: PMC6036704 DOI: 10.3389/fchem.2018.00254] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
Three natural products of nonaketide biosynthetic origin, probably biosynthesized from nine molecules of malonyl-CoA, have been isolated. Herein we described the isolation and structure elucidation of huanglongmycin (HLM) A-C and identification of the putative hlm biosynthetic gene cluster from Streptomyces sp. CB09001, isolated from a karstic cave in Xiangxi, China. Albeit previously isolated, HLM A was reported for the first time to exhibit moderate cytotoxicity against A549 lung cancer cell line (IC50 = 13.8 ± 1.5 μM) and weak antibacterial activity against gram-negative clinical isolates. A putative biosynthetic pathway for HLM A, featuring a nonaketide-specific type II polyketide synthase, was proposed. It would be consistent with the isolation of HLM B and C, which are two new natural products and likely shunt metabolites during HLM A biosynthesis.
Collapse
Affiliation(s)
- Lin Jiang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Hong Pu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Jingxi Xiang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Meng Su
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States
| | - Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, United States.,Department Molecular Medicine, The Scripps Research Institute, Jupiter, FL, United States.,Natural Products Library Initiative, The Scripps Research Institute, Jupiter, FL, United States
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, China
| |
Collapse
|
30
|
(-)-Shikimic Acid as a Chiral Building Block for the Synthesis of New Cytotoxic 6-Aza-Analogues of Angucyclinones. Molecules 2018; 23:molecules23061422. [PMID: 29895756 PMCID: PMC6099682 DOI: 10.3390/molecules23061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 01/28/2023] Open
Abstract
We describe the syntheses of nine new angucyclinone 6-aza-analogues, achieved through a hetero Diels-Alder reaction between the shikimic acid derivative-azadiene 13, with different naphthoquinones. The cytotoxic activity of the new synthesized compounds and five angucyclinones, previously reported, was evaluated in vitro against three cancer cell lines: PC-3 (prostate cancer), HT-29 (colon cancer), MCF-7 (breast cancer), and one non-tumoral cell line, human colon epithelial cells (CCD841 CoN). Our results showed that most 6-azadiene derivatives exhibited significant cytotoxic activities, which was demonstrated by their IC50 values (less than 10 μM), especially for the most sensitive cells, PC-3 and HT-29. From a chemical point of view, depending on the protected group of ring A and the pattern of substitution on ring D, cytotoxicity elicited these compounds, in terms of their potency and selectivity. Therefore, according to these chemical features, the most promising agents for every cancer cell line were 7a, 17, and 19c for PC-3 cells; 7a, 17, and 20 for HT-29 cells, and 19a for MCF-7 cells.
Collapse
|
31
|
Kiamycins B and C, unusual bridged angucyclinones from a marine sediment-derived Streptomyces sp. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Chen JJ, Rateb ME, Love MS, Xu Z, Yang D, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, McNamara CW, Shen B. Herbicidins from Streptomyces sp. CB01388 Showing Anti- Cryptosporidium Activity. JOURNAL OF NATURAL PRODUCTS 2018; 81:791-797. [PMID: 29469575 DOI: 10.1021/acs.jnatprod.7b00850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A high-content imaging assay was used to screen the fraction collection of the Natural Product Library at The Scripps Research Institute for inhibitors of Cryptosporidium parvum. A chemical investigation of one strain, Streptomyces sp. CB01388, resulted in the isolation of six herbicidins (1-6), one of which is new (herbicidin L, 1). Five of the six herbicidins (1-3, 5, 6) showed moderate inhibitory activity against C. parvum, with 1 and 6 comparable to the FDA-approved drug nitazoxanide, and 2-6 showed no toxicity to the host HCT-8 cells and human HEK293T and HepG2 cells. These findings highlight the herbicidin scaffold for anti- Cryptosporidium drug development.
Collapse
Affiliation(s)
- Jian-Jun Chen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Mostafa E Rateb
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Melissa S Love
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Zhengren Xu
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Dong Yang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
| | - Li-Xing Zhao
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yi Jiang
- Yunnan Institute of Microbiology , Yunnan University , Kunming , Yunnan 650091 , People's Republic of China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine , Central South University , Changsha , Hunan 410013 , People's Republic of China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410013 , People's Republic of China
| | - Case W McNamara
- California Institute for Biomedical Research , La Jolla , California 92037 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
- Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
33
|
Competition and co-regulation of spirotoamide and tautomycetin biosynthesis in Streptomyces griseochromogenes, and isolation and structural elucidation of spirotoamide C and D. J Antibiot (Tokyo) 2017; 70:710-714. [PMID: 28196980 DOI: 10.1038/ja.2017.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
|
34
|
Yixizhuoma, Ishikawa N, Abdelfattah MS, Ishibashi M. Elmenols C-H, new angucycline derivatives isolated from a culture of Streptomyces sp. IFM 11490. J Antibiot (Tokyo) 2017; 70:601-606. [DOI: 10.1038/ja.2016.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023]
|
35
|
Abstract
The enediyne family of natural products has had a profound impact on modern chemistry, biology, and medicine, and yet only 11 enediynes have been structurally characterized to date. Here we report a genome survey of 3,400 actinomycetes, identifying 81 strains that harbor genes encoding the enediyne polyketide synthase cassettes that could be grouped into 28 distinct clades based on phylogenetic analysis. Genome sequencing of 31 representative strains confirmed that each clade harbors a distinct enediyne biosynthetic gene cluster. A genome neighborhood network allows prediction of new structural features and biosynthetic insights that could be exploited for enediyne discovery. We confirmed one clade as new C-1027 producers, with a significantly higher C-1027 titer than the original producer, and discovered a new family of enediyne natural products, the tiancimycins (TNMs), that exhibit potent cytotoxicity against a broad spectrum of cancer cell lines. Our results demonstrate the feasibility of rapid discovery of new enediynes from a large strain collection. Recent advances in microbial genomics clearly revealed that the biosynthetic potential of soil actinomycetes to produce enediynes is underappreciated. A great challenge is to develop innovative methods to discover new enediynes and produce them in sufficient quantities for chemical, biological, and clinical investigations. This work demonstrated the feasibility of rapid discovery of new enediynes from a large strain collection. The new C-1027 producers, with a significantly higher C-1027 titer than the original producer, will impact the practical supply of this important drug lead. The TNMs, with their extremely potent cytotoxicity against various cancer cells and their rapid and complete cancer cell killing characteristics, in comparison with the payloads used in FDA-approved antibody-drug conjugates (ADCs), are poised to be exploited as payload candidates for the next generation of anticancer ADCs. Follow-up studies on the other identified hits promise the discovery of new enediynes, radically expanding the chemical space for the enediyne family.
Collapse
|
36
|
New isofuranonaphthoquinones and isoindolequinones from Streptomyces sp. CB01883. J Antibiot (Tokyo) 2016; 70:414-422. [DOI: 10.1038/ja.2016.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/27/2022]
|
37
|
Ma M, Rateb ME, Yang D, Rudolf JD, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, Shen B. Germicidins H–J from Streptomyces sp. CB00361. J Antibiot (Tokyo) 2016; 70:200-203. [DOI: 10.1038/ja.2016.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
|
38
|
Xie Z, Zhou L, Guo L, Yang X, Qu G, Wu C, Zhang S. Grisemycin, a Bridged Angucyclinone with a Methylsulfinyl Moiety from a Marine-Derived Streptomyces sp. Org Lett 2016; 18:1402-5. [DOI: 10.1021/acs.orglett.6b00332] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zeping Xie
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Lin Guo
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Xiaoping Yang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Guiwu Qu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Changjing Wu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| | - Shumin Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect
and Clinical Evaluation of State Administration of Traditional Chinese
Medicine, School of Pharmacy, ‡School of Enology, and §School of Gerontology, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
39
|
Abdelfattah MS, Arai MA, Ishibashi M. Bioactive Secondary Metabolites with Unique Aromatic and Heterocyclic Structures Obtained from Terrestrial Actinomycetes Species. Chem Pharm Bull (Tokyo) 2016; 64:668-75. [DOI: 10.1248/cpb.c16-00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohamed S. Abdelfattah
- Graduate School of Pharmaceutical Sciences, Chiba University
- Chemistry Department, Faculty of Science,
Helwan University
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|