1
|
Barron D, Ratinaud Y, Rambousek S, Brinon B, Naranjo Pinta M, Sanders MJ, Sakamoto K, Ciclet O. Unambiguous Characterization of Commercial Natural (Dihydro)phenanthrene Compounds Is Vital in the Discovery of AMPK Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14993-15004. [PMID: 38896806 DOI: 10.1021/acs.jafc.4c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
These days, easy access to commercially available (poly)phenolic compounds has expanded the scope of potential research beyond the field of chemistry, particularly in the area of their bioactivity. However, the quality of these compounds is often overlooked or not even considered. This issue is illustrated in this study through the example of (dihydro)phenanthrenes, a group of natural products present in yams, as AMP-activated protein kinase (AMPK) activators. A study conducted in our group on a series of compounds, fully characterized using a combination of chemical synthesis, NMR and MS techniques, provided evidence that the conclusions of a previous study were erroneous, likely due to the use of a misidentified commercial compound by its supplier. Furthermore, we demonstrated that additional representatives of the (dihydro)phenanthrene phytochemical classes were able to directly activate AMPK, avoiding the risk of misinterpretation of results based on analysis of a single compound alone.
Collapse
Affiliation(s)
- Denis Barron
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Yann Ratinaud
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Simona Rambousek
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | | | - Matthew J Sanders
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Kei Sakamoto
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Olivier Ciclet
- Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Queiroz EF, Guillarme D, Wolfender JL. Advanced high-resolution chromatographic strategies for efficient isolation of natural products from complex biological matrices: from metabolite profiling to pure chemical entities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2024; 23:1415-1442. [PMID: 39574436 PMCID: PMC11576662 DOI: 10.1007/s11101-024-09928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 11/24/2024]
Abstract
The isolation of pure compounds from extracts represents a key step common to all investigations of natural product (NP) research. Isolation methods have gone through a remarkable evolution. Current approaches combine powerful metabolite profiling methods for compounds annotation with omics mining results and/or bioassay for bioactive NPs/biomarkers priorisation. Targeted isolation of prioritized NPs is performed using high-resolution chromatographic methods that closely match those used for analytical profiling. Considerable progress has been made by the introduction of innovative stationary phases providing remarkable selectivity for efficient NPs isolation. Today, efficient separation conditions determined at the analytical scale using high- or ultra-high-performance liquid chromatography can be optimized via HPLC modelling software and efficiently transferred to the semi-preparative scale by chromatographic calculation. This ensures similar selectivity at both the analytical and preparative scales and provides a precise separation prediction. High-resolution conditions at the preparative scale can notably be granted using optimized sample preparation and dry load sample introduction. Monitoring by ultraviolet, mass spectrometry, and or universal systems such as evaporative light scattering detectors and nuclear magnetic resonance allows to precisely guide the isolation or trigger the collection of specific NPs with different structural scaffolds. Such approaches can be applied at different scales depending on the amounts of NPs to be isolated. This review will showcase recent research to highlight both the potential and constraints of using these cutting-edge technologies for the isolation of plant and microorganism metabolites. Several strategies involving their application will be examined and critically discussed. Graphical abstract
Collapse
Affiliation(s)
- Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
3
|
Aly AA, Górecki T. Two-dimensional liquid chromatography with reversed phase in both dimensions: A review. J Chromatogr A 2024; 1721:464824. [PMID: 38522405 DOI: 10.1016/j.chroma.2024.464824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Two-dimensional liquid chromatography (2D-LC), and in particular comprehensive two-dimensional liquid chromatography (LC×LC), offers increased peak capacity, resolution and selectivity compared to one-dimensional liquid chromatography. It is commonly accepted that the technique produces the best results when the separation mechanisms in the two dimensions are completely orthogonal; however, the use of similar separation mechanisms in both dimensions has been gaining popularity as it helps avoid difficulties related to mobile phase incompatibility and poor column efficiency. The remarkable advantages of using reversed phase in both dimensions (RPLC×RPLC) over other separation mechanisms made it a promising technique in the separation of complex samples. This review discusses some physical and practical considerations in method development for 2D-LC involving the use of RP in both dimensions. In addition, an extensive overview is presented of different applications that relied on RPLC×RPLC and 2D-LC with reversed phase column combinations to separate components of complex samples in different fields including food analysis, natural product analysis, environmental analysis, proteomics, lipidomics and metabolomics.
Collapse
Affiliation(s)
- Alshymaa A Aly
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate, Arab Republic of Egypt; Department of Chemistry, University of Waterloo, ON, Canada
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, ON, Canada.
| |
Collapse
|
4
|
Hou Y, Zhao W, Yu H, Zhang F, Zhang HT, Zhou Y. Biochanin A alleviates cognitive impairment and hippocampal mitochondrial damage in ovariectomized APP/PS1 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154056. [PMID: 35338989 DOI: 10.1016/j.phymed.2022.154056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/27/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Estrogen deficiency leads to mitochondrial defects that precede Alzheimer's disease (AD)-associated pathological changes in a postmenopausal mouse model. Biochanin A (BCA) is a phytoestrogen isolated from Trifolium pratense L. used to relieve postmenopausal problems in women. In previous work, we observed that oral BCA treatment led to neuroprotection in an ovariectomized rat model. The objective of this study was to investigate whether and how BCA protects against hippocampal mitochondrial damage in a postmenopausal model of AD. METHOD APP/PS1 mice underwent bilateral ovariectomy and then, seven days later, received oral BCA at 20 or 40 mg/kg, or oral estradiol at 0.5 mg/kg, daily for 90 days. Sham animals were not ovariectomized and received no additional treatments. Cognitive function was examined using the passive avoidance task, novel object recognition test, and Morris water maze test. The level of circulating estrogen in vivo was assessed indirectly by measuring the wet weight of the uterus. We detected Aβ deposition and PGC-1α in brain by immunohistochemistry; p62, by immunofluorescence; and ERα, ERβ, PGC-1α, NRF1, mtTFA, Drp1, OPA1, Mfn2, Beclin1, LC3B, Pink1, and Parkin by immunoblotting. RESULTS BCA treatment rescued cognitive decline and reduced Aβ deposition and BACE1 expression in the hippocampus of ovariectomized APP/PS1 mice. BCA reversed the imbalance of mitochondrial dynamics caused by ovariectomy by increasing the expression of phospho-Drp1 (ser637), OPA1, and Mfn2. BCA reversed abnormal mitophagy induced by ovariectomy by increasing the expression of Beclin1, LC3B, Pink1, and Parkin, as well as by reducing the expression of p62. CONCLUSIONS BCA treatment enhances learning and memory abilities and alleviates AD symptoms in a postmenopausal model of AD. A possible mechanism is that BCA rescues the reduction of mitochondrial biogenesis, imbalance of mitochondrial dynamics, and abnormal mitophagy caused by ovariectomy. This study supports further research on BCA to develop treatments for postmenopausal women with AD.
Collapse
Affiliation(s)
- Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Fangfang Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao 266011, China.
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 619 Changcheng Street, Daiyue district, Taian 271021, China.
| |
Collapse
|
5
|
Sanders MJ, Ratinaud Y, Neopane K, Bonhoure N, Day EA, Ciclet O, Lassueur S, Naranjo Pinta M, Deak M, Brinon B, Christen S, Steinberg GR, Barron D, Sakamoto K. Natural (dihydro)phenanthrene plant compounds are direct activators of AMPK through its allosteric drug and metabolite-binding site. J Biol Chem 2022; 298:101852. [PMID: 35331736 PMCID: PMC9108889 DOI: 10.1016/j.jbc.2022.101852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a central energy sensor that coordinates the response to energy challenges to maintain cellular ATP levels. AMPK is a potential therapeutic target for treating metabolic disorders, and several direct synthetic activators of AMPK have been developed that show promise in preclinical models of type 2 diabetes. These compounds have been shown to regulate AMPK through binding to a novel allosteric drug and metabolite (ADaM)–binding site on AMPK, and it is possible that other molecules might similarly bind this site. Here, we performed a high-throughput screen with natural plant compounds to identify such direct allosteric activators of AMPK. We identified a natural plant dihydrophenathrene, Lusianthridin, which allosterically activates and protects AMPK from dephosphorylation by binding to the ADaM site. Similar to other ADaM site activators, Lusianthridin showed preferential activation of AMPKβ1-containing complexes in intact cells and was unable to activate an AMPKβ1 S108A mutant. Lusianthridin dose-dependently increased phosphorylation of acetyl-CoA carboxylase in mouse primary hepatocytes, which led to a corresponding decrease in de novo lipogenesis. This ability of Lusianthridin to inhibit lipogenesis was impaired in hepatocytes from β1 S108A knock-in mice and mice bearing a mutation at the AMPK phosphorylation site of acetyl-CoA carboxylase 1/2. Finally, we show that activation of AMPK by natural compounds extends to several analogs of Lusianthridin and the related chemical series, phenanthrenes. The emergence of natural plant compounds that regulate AMPK through the ADaM site raises the distinct possibility that other natural compounds share a common mechanism of regulation.
Collapse
Affiliation(s)
- Matthew J Sanders
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland.
| | - Yann Ratinaud
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Katyayanee Neopane
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Bonhoure
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Emily A Day
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Olivier Ciclet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Steve Lassueur
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Martine Naranjo Pinta
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Maria Deak
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Benjamin Brinon
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Stefan Christen
- Nestle Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Denis Barron
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Two isoprenylated flavonoids from Dorstenia psilurus activate AMPK, stimulate glucose uptake, inhibit glucose production and lower glycemia. Biochem J 2020; 476:3687-3704. [PMID: 31782497 DOI: 10.1042/bcj20190326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze-thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1-/- mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.
Collapse
|
7
|
Integration of micro-fractionation, high-performance liquid chromatography-ultraviolet detector-charged aerosol detector-mass spectrometry analysis and cellular dynamic mass redistribution assay to accelerate alkaloid drug discovery. J Chromatogr A 2020; 1616:460779. [DOI: 10.1016/j.chroma.2019.460779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023]
|
8
|
Montero L, Herrero M. Two-dimensional liquid chromatography approaches in Foodomics – A review. Anal Chim Acta 2019; 1083:1-18. [DOI: 10.1016/j.aca.2019.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023]
|
9
|
Pirok BWJ, Stoll DR, Schoenmakers PJ. Recent Developments in Two-Dimensional Liquid Chromatography: Fundamental Improvements for Practical Applications. Anal Chem 2019; 91:240-263. [PMID: 30380827 PMCID: PMC6322149 DOI: 10.1021/acs.analchem.8b04841] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bob W. J. Pirok
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
- TI-COAST, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Peter J. Schoenmakers
- University
of Amsterdam, van ’t Hoff
Institute for Molecular Sciences, Analytical-Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|