1
|
Zhao Y, Li T, Kjaerulff L, Venter H, Coriani S, Møller BL, Semple S, Staerk D. Orthogonal Reversed-Phase C 18 and Pentafluorophenyl HPLC Separation for Phytochemical Profiling of Serrulatanes in Eremophila denticulata. JOURNAL OF NATURAL PRODUCTS 2023; 86:2638-2650. [PMID: 38013449 DOI: 10.1021/acs.jnatprod.3c00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Serrulatanes constitute a class of unique diterpenoids derived from all-Z nerylneryl diphosphate rather than the conventional all-E diterpenoid precursor geranylgeranyl diphosphate and thus provide an intriguing expansion of the chemical space of plant specialized metabolites. Plants of the Australian Eremophila genus are rich sources of structurally diverse serrulatanes. Here, we report the identification of 15 hitherto undescribed serrulatanes (eremoculatanes A-N), together with 16 previously reported compounds, from the EtOAc extract of Eremophila denticulata leaves. Isolation was performed by a combined use of systematic HPLC-PDA-HRMS-based phytochemical profiling and orthogonal reversed-phase C18 and pentafluorophenyl separations. Among the new compounds isolated, eremoculatane A contains a C12 backbone, for which the configuration was established by comparison of experimentally measured and theoretically calculated ECD spectra. The antihyperglycemic and antibacterial activities of the E. denticulata extract were investigated by high-resolution inhibition profiling, and they indicated that major constituents, mainly serrulatanes and flavonoids, contributed to the observed activity of the extract. One flavonoid, eupafolin (4), displayed moderate α-glucosidase inhibitory activity with an IC50 value of 41.3 μM, and four serrulatanes (8, 9, 19g, and 19j) showed more than 50% PTP1B inhibition at 200 μM.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Tuo Li
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide, SA 5000, Australia
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark
| | - Susan Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Zhao Y, Gericke O, Li T, Kjaerulff L, Kongstad KT, Heskes AM, Møller BL, Jørgensen FS, Venter H, Coriani S, Semple SJ, Staerk D. Polypharmacology-Labeled Molecular Networking: An Analytical Technology Workflow for Accelerated Identification of Multiple Bioactive Constituents in Complex Extracts. Anal Chem 2023; 95:4381-4389. [PMID: 36802535 DOI: 10.1021/acs.analchem.2c04859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Discovery of sustainable and benign-by-design drugs to combat emerging health pandemics calls for new analytical technologies to explore the chemical and pharmacological properties of Nature's unique chemical space. Here, we present a new analytical technology workflow, polypharmacology-labeled molecular networking (PLMN), where merged positive and negative ionization tandem mass spectrometry-based molecular networking is linked with data from polypharmacological high-resolution inhibition profiling for easy and fast identification of individual bioactive constituents in complex extracts. The crude extract of Eremophila rugosa was subjected to PLMN analysis for the identification of antihyperglycemic and antibacterial constituents. Visually easy-interpretable polypharmacology scores and polypharmacology pie charts as well as microfractionation variation scores of each node in the molecular network provided direct information about each constituent's activity in the seven assays included in this proof-of-concept study. A total of 27 new non-canonical nerylneryl diphosphate-derived diterpenoids were identified. Serrulatane ferulate esters were shown to be associated with antihyperglycemic and antibacterial activities, including some showing synergistic activity with oxacillin in clinically relevant (epidemic) methicillin-resistant Staphylococcus aureus strains and some showing saddle-shaped binding to the active site of protein-tyrosine phosphatase 1B. PLMN is scalable in the number and types of assays included and thus holds potential for a paradigm shift toward polypharmacological natural-products-based drug discovery.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Oliver Gericke
- Department of Plant and Environment Sciences, Faculty of Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Tuo Li
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Allison Maree Heskes
- Department of Plant and Environment Sciences, Faculty of Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Birger Lindberg Møller
- Department of Plant and Environment Sciences, Faculty of Sciences, Plant Biochemistry Laboratory, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Henrietta Venter
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australian
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, Kgs. Lyngby DK-2800, Denmark
| | - Susan J Semple
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australian
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
3
|
Rasmussen LF, Anton J, Kjaerulff L, Zhao Y, Semple SJ, Chi N, Buirchell B, Møller BL, Staerk D. Serrulatane diterpenoids with unusual side chain modifications from root bark of Eremophila longifolia. PHYTOCHEMISTRY 2022; 203:113408. [PMID: 36063865 DOI: 10.1016/j.phytochem.2022.113408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
The plant genus Eremophila is endemic to Australia and widespread in arid regions. Root bark extract of Eremophila longifolia (R.Br.) F.Muell. (Scrophulariaceae) was investigated by LC-PDA-HRMS, and dereplication suggested the presence of a series of diterpenoids. Using a combination of preparative- and analytical-scale HPLC separation as well as extensive 1D and 2D NMR analysis, the structures of 12 hitherto unreported serrulatane diterpenoids, eremolongine A-L, were established. These structures included serrulatanes with unusual side chain modifications to form hitherto unseen skeletons with, e.g., cyclopentane, oxepane, and bicyclic hexahydro-1H-cyclopenta[c]furan moieties. Serrulatane diterpenoids in Eremophila have recently been shown to originate from a common biosynthetic precursor with conserved stereochemical configuration, and this was used for tentative assignment of the relative and absolute configuration of the isolated compounds. Triple high-resolution α-glucosidase/α-amylase/PTP1B inhibition profiling demonstrated that several of the eremolongines had weak inhibitory activity towards targets important for management of type 2 diabetes.
Collapse
Affiliation(s)
- Line Fentz Rasmussen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Jennifer Anton
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Yong Zhao
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Ndi Chi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Como, Western Australia, 6152, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
4
|
Semple SJ, Staerk D, Buirchell BJ, Fowler RM, Gericke O, Kjaerulff L, Zhao Y, Pedersen HA, Petersen MJ, Rasmussen LF, Bredahl EK, Pedersen GB, McNair LM, Ndi CP, Hansen NL, Heskes AM, Bayly MJ, Loland CJ, Heinz N, Møller BL. Biodiscoveries within the Australian plant genus Eremophila based on international and interdisciplinary collaboration: results and perspectives on outstanding ethical dilemmas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:936-953. [PMID: 35696314 PMCID: PMC9543726 DOI: 10.1111/tpj.15866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 05/26/2023]
Abstract
In a cross-continental research initiative, including researchers working in Australia and Denmark, and based on joint external funding by a 3-year grant from the Novo Nordisk Foundation, we have used DNA sequencing, extensive chemical profiling and molecular networking analyses across the entire Eremophila genus to provide new knowledge on the presence of natural products and their bioactivities using polypharmocological screens. Sesquiterpenoids, diterpenoids and dimers of branched-chain fatty acids with previously unknown chemical structures were identified. The collection of plant material from the Eremophila genus was carried out according to a 'bioprospecting agreement' with the Government of Western Australia. We recognize that several Eremophila species hold immense cultural significance to Australia's First Peoples. In spite of our best intentions to ensure that new knowledge gained about the genus Eremophila and any potential future benefits are shared in an equitable manner, in accordance with the Nagoya Protocol, we encounter serious dilemmas and potential conflicts in making benefit sharing with Australia's First Peoples a reality.
Collapse
Affiliation(s)
- Susan J. Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health SciencesUniversity of South AustraliaAdelaide5000Australia
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | | | - Rachael M. Fowler
- School of BioSciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
- Present address:
Carlsberg Research LaboratoryJ.C. Jacobsens Gade 4DK‐1799CopenhagenValbyDenmark.
| | - Louise Kjaerulff
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Hans Albert Pedersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Malene J. Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Line Fentz Rasmussen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Emilie Kold Bredahl
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Gustav Blichfeldt Pedersen
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Laura Mikél McNair
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Chi P. Ndi
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health SciencesUniversity of South AustraliaAdelaide5000Australia
| | - Nikolaj Lervad Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Allison M. Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Michael J. Bayly
- School of BioSciencesThe University of MelbourneParkvilleVictoria3010Australia
| | - Claus J. Loland
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Nanna Heinz
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental SciencesUniversity of CopenhagenDK‐1871Frederiksberg CDenmark
| |
Collapse
|
5
|
Jarmusch SA, van der Hooft JJJ, Dorrestein PC, Jarmusch AK. Advancements in capturing and mining mass spectrometry data are transforming natural products research. Nat Prod Rep 2021; 38:2066-2082. [PMID: 34612288 PMCID: PMC8667781 DOI: 10.1039/d1np00040c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2016 up to 2021Mass spectrometry (MS) is an essential technology in natural products research with MS fragmentation (MS/MS) approaches becoming a key tool. Recent advancements in MS yield dense metabolomics datasets which have been, conventionally, used by individual labs for individual projects; however, a shift is brewing. The movement towards open MS data (and other structural characterization data) and accessible data mining tools is emerging in natural products research. Over the past 5 years, this movement has rapidly expanded and evolved with no slowdown in sight; the capabilities of today vastly exceed those of 5 years ago. Herein, we address the analysis of individual datasets, a situation we are calling the '2021 status quo', and the emergent framework to systematically capture sample information (metadata) and perform repository-scale analyses. We evaluate public data deposition, discuss the challenges of working in the repository scale, highlight the challenges of metadata capture and provide illustrative examples of the power of utilizing repository data and the tools that enable it. We conclude that the advancements in MS data collection must be met with advancements in how we utilize data; therefore, we argue that open data and data mining is the next evolution in obtaining the maximum potential in natural products research.
Collapse
Affiliation(s)
- Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark.
| | | | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0751, USA
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093-0751, USA
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Tinte MM, Chele KH, van der Hooft JJJ, Tugizimana F. Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: An Overview. Metabolites 2021; 11:445. [PMID: 34357339 PMCID: PMC8305945 DOI: 10.3390/metabo11070445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.
Collapse
Affiliation(s)
- Morena M. Tinte
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | - Kekeletso H. Chele
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | | | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
7
|
Teshima S, Yamashita-Higuchi Y, Sugimoto S, Matsunami K, Otsuka H, Shinzato T. Zanthosides A–D: Four Aromatic Glucosides from the Leaves of <i>Zanthoxylum ailanthoides</i>. Chem Pharm Bull (Tokyo) 2020; 68:814-817. [DOI: 10.1248/cpb.c20-00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Serika Teshima
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Sachiko Sugimoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Hideaki Otsuka
- Graduate School of Biomedical and Health Sciences, Hiroshima University
- Faculty of Pharmacy, Yasuda Women’s University
| | - Takakazu Shinzato
- Subtropical Field Center, Faculty of Agriculture, University of the Ryukyus
| |
Collapse
|
8
|
Gimenes L, Luna-Dulcey L, Batista JM, Dos Santos FM, Popolin CP, Cominetti MR, Fernandes JB, Staerk D. Structure Elucidation and Absolute Configuration Determination of Nortriterpenoids from Picramnia glazioviana. JOURNAL OF NATURAL PRODUCTS 2020; 83:1859-1875. [PMID: 32530627 DOI: 10.1021/acs.jnatprod.0c00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, HPLC-PDA-HRMS-SPE-NMR data were used for initial analysis of the CH2Cl2 fraction of an EtOH extract of the leaves of Picramnia glazioviana. The HRMS, UV, and NMR data obtained from the HPLC-PDA-HRMS-SPE-NMR analysis were used to direct semipreparative HPLC isolation toward nortriterpenoids, which resulted in the isolation of 18 new and highly oxygenated nortriterpenoids (1-3, 5-10, 12-19, and 21), named picravianes C-T. Their structures were determined on the basis of analysis of UV, HRMS, and 2D NMR spectroscopic data, including determination of the relative configuration on the basis of coupling pattern analysis and nuclear Overhauser effect correlations. The absolute configurations of compounds 7, 9, 10, 14, 15, 17, 18, 19, and 21 were assigned using electronic circular dichroism data, and the cytotoxicity of compounds 6, 10, 14, 16, 17, 18, 19, and 21 was evaluated against MDA-MB-231 triple-negative breast cancer, SKBR-3 Her2-overexpressing breast cancer, and A549 lung cancer cells lines. The isolated compounds contain a hitherto undescribed modification of the terminal backbone and/or E-ring, and a possible biosynthetic pathway for their formation is proposed.
Collapse
Affiliation(s)
- Leila Gimenes
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, SP, Brazil
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Liany Luna-Dulcey
- Department of Gerontology, Federal University of Sao Carlos, 13565-905, Sao Carlos SP, Brazil
| | - Joao M Batista
- Institute of Science and Technology, Federal University of Sao Paulo, 12231-280 Sao Jose dos Campos, SP, Brazil
| | - Fernando M Dos Santos
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University (UFF), 24110-090 Niteroi, RJ, Brazil
| | - Cecília P Popolin
- Department of Gerontology, Federal University of Sao Carlos, 13565-905, Sao Carlos SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, 13565-905, Sao Carlos SP, Brazil
| | - Joao B Fernandes
- Department of Chemistry, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, SP, Brazil
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Pedersen HA, Ndi C, Semple SJ, Buirchell B, Møller BL, Staerk D. PTP1B-Inhibiting Branched-Chain Fatty Acid Dimers from Eremophila oppositifolia subsp. angustifolia Identified by High-Resolution PTP1B Inhibition Profiling and HPLC-PDA-HRMS-SPE-NMR Analysis. JOURNAL OF NATURAL PRODUCTS 2020; 83:1598-1610. [PMID: 32255628 DOI: 10.1021/acs.jnatprod.0c00070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ten new branched-chain fatty acid (BCFA) dimers with a substituted cyclohexene structure, five new monomers, and two known monomers, (2E,4Z,6E)-5-(acetoxymethyl)tetradeca-2,4,6-trienoic acid and its 5-hydroxymethyl analogue, were identified in the leaf extract of Eremophila oppositifolia subsp. angustifolia using a combination of HPLC-PDA-HRMS-SPE-NMR analysis and semipreparative-scale HPLC. The dimers could be classified as three types of Diels-Alder reaction products formed between monomers at two different sites of unsaturation of the dienophile. Two of the monomers represent potential biosynthetic intermediates of branched-chain fatty acids. Several compounds were found by high-resolution bioactivity profiling to inhibit PTP1B and were purified subsequently by semipreparative-scale HPLC. The dimers were generally more potent than the monomers with IC50 values ranging from 2 to 66 μM, compared to 38-484 μM for the monomers. The ten fatty acid dimers represent both a novel class of compounds and a novel class of PTP1B inhibitors.
Collapse
Affiliation(s)
- Hans Albert Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Chi Ndi
- School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Susan J Semple
- School of Pharmacy and Medical Sciences, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Bevan Buirchell
- Wise Owl Consulting, Gardner Street, Como, Western Australia 6983, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Zhao Y, Kongstad KT, Liu Y, He C, Staerk D. Unraveling the complexity of complex mixtures by combining high-resolution pharmacological, analytical and spectroscopic techniques: antidiabetic constituents in Chinese medicinal plants. Faraday Discuss 2020; 218:202-218. [PMID: 31119225 DOI: 10.1039/c8fd00223a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Medicinal plants have been widely used as (poly)pharmacological remedies and constitute a rich source for antidiabetic drug discovery. In the present study, forty medicinal plant samples collected in China were tested for inhibitory activity against α-glucosidase, α-amylase, and protein-tyrosine phosphatase 1B (PTP1B). Crude ethyl acetate extracts of Dioscorea bulbifera L., Boehmeria nivea Gaudich, Tinospora sagittata Gagnep. and Persicaria bistorta (L.) Samp. showed dual inhibitory activity towards α-glucosidase and PTP1B, and were chosen for further investigation. Subsequent dual high-resolution α-glucosidase/PTP1B profiling or triple high-resolution α-glucosidase/α-amylase/PTP1B profiling combined with HPLC-HRMS and NMR spectroscopy led to the identification of 28 metabolites with one or more bioactivities. Among these, three new phenanthrenes were identified from D. bulbifera, including one new biphenanthrene (10) exhibiting promising dual inhibitory activity towards α-glucosidase and PTP1B with IC50 values of 2.08 ± 0.19 and 3.36 ± 0.25 μM, respectively. Two triterpenoids and one fatty acid from B. nivea and T. sagittata as well as some commercially available fatty acids showed strong PTP1B inhibitory activity with IC50 values in the range of 4.89 ± 0.38 to 53.77 ± 4.20 μM.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
11
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
12
|
Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, Alseekh S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020; 10:E37. [PMID: 31952212 PMCID: PMC7023240 DOI: 10.3390/metabo10010037] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/25/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Plant-derived natural products have long been considered a valuable source of lead compounds for drug development. Natural extracts are usually composed of hundreds to thousands of metabolites, whereby the bioactivity of natural extracts can be represented by synergism between several metabolites. However, isolating every single compound from a natural extract is not always possible due to the complex chemistry and presence of most secondary metabolites at very low levels. Metabolomics has emerged in recent years as an indispensable tool for the analysis of thousands of metabolites from crude natural extracts, leading to a paradigm shift in natural products drug research. Analytical methods such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) are used to comprehensively annotate the constituents of plant natural products for screening, drug discovery as well as for quality control purposes such as those required for phytomedicine. In this review, the current advancements in plant sample preparation, sample measurements, and data analysis are presented alongside a few case studies of the successful applications of these processes in plant natural product drug discovery.
Collapse
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Leonardo Perez de Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.A.F.); (S.M.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (L.P.d.S.); (A.R.F.)
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv 4000, Bulgaria
| |
Collapse
|
13
|
Agarwal G, Carcache PJB, Addo EM, Kinghorn AD. Current status and contemporary approaches to the discovery of antitumor agents from higher plants. Biotechnol Adv 2020; 38:107337. [PMID: 30633954 PMCID: PMC6614024 DOI: 10.1016/j.biotechadv.2019.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/13/2022]
Abstract
Higher plant constituents have afforded clinically available anticancer drugs. These include both chemically unmodified small molecules and their synthetic derivatives currently used or those in clinical trials as antineoplastic agents, and an updated summary is provided. In addition, botanical dietary supplements, exemplified by mangosteen and noni constituents, are also covered as potential cancer chemotherapeutic agents. Approaches to metabolite purification, rapid dereplication, and biological evaluation including analytical hyphenated techniques, molecular networking, and advanced cellular and animal models are discussed. Further, enhanced and targeted drug delivery systems for phytochemicals, including micelles, nanoparticles and antibody drug conjugates (ADCs) are described herein.
Collapse
Affiliation(s)
- Garima Agarwal
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Peter J Blanco Carcache
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Ermias Mekuria Addo
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
14
|
Lima RDCL, Berg RS, Rønning SB, Afseth NK, Knutsen SH, Staerk D, Wubshet SG. Peptides from chicken processing by-product inhibit DPP-IV and promote cellular glucose uptake: potential ingredients for T2D management. Food Funct 2019; 10:1619-1628. [PMID: 30821796 DOI: 10.1039/c8fo02450b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibition of dipeptidyl peptidase IV (DPP-IV) and stimulation of muscle glucose uptake are two of the key strategies for management of type-2-diabetes (T2D). In the present study, four protein hydrolysates generated by enzymatic hydrolysis of chicken by-product, i.e., mechanical chicken deboning residue, were evaluated for their DPP-IV inhibitory activity as well as their effect on glucose uptake by skeletal muscle cells. The DPP-IV inhibitory assay was performed at two concentrations (1000 μg mL-1 and 10 μg mL-1) for the crude chicken protein hydrolysates. The hydrolysate with the highest DPP-IV inhibition was selected for preparative-scale fractionation using size-exclusion chromatography (SEC). The SEC fractions were tested for DPP-IV inhibitory activity as well as their effect on glucose uptake and metabolic activity of skeletal muscle cells. The muscle cells were treated with the SEC fractions and glucose uptake was measured based on luminescence detection of 2-deoxyglucose-6-phosphate (2DG6P). A fraction with peptides in the lower molecular weight range was shown to promote glucose uptake and to inhibit DPP-IV. Further chromatographic fractionation followed by inhibition assaying of the most potent SEC fraction led to isolation of five refined peptide fractions with more than 80% DPP-IV inhibition, which were subsequently analyzed with LC-HRMS/MS. This led to identification of 14 peptides as potential DPP-IV inhibitors from protein hydrolysates of mechanical chicken deboning residue.
Collapse
|
15
|
Alvarez-Rivera G, Ballesteros-Vivas D, Parada-Alfonso F, Ibañez E, Cifuentes A. Recent applications of high resolution mass spectrometry for the characterization of plant natural products. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault JH, Bertrand S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal Chem 2018; 91:704-742. [DOI: 10.1021/acs.analchem.8b05112] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | | | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 44035 Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France
| |
Collapse
|
17
|
Zhao Y, Kongstad KT, Jäger AK, Nielsen J, Staerk D. Quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude root bark of Morus alba L. J Chromatogr A 2018; 1556:55-63. [PMID: 29729863 DOI: 10.1016/j.chroma.2018.04.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
In this paper, quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling combined with HPLC-HRMS-SPE-NMR were used for studying the polypharmacological properties of crude root bark extract of Morus alba L. This species is used as an anti-diabetic principle in many traditional treatment systems around the world, and the crude ethyl acetate extract of M. alba root bark was found to inhibit α-glucosidase, α-amylase and protein-tyrosine phosphatase 1B (PTP1B) with IC50 values of 1.70 ± 0.72, 5.16 ± 0.69, and 5.07 ± 0.68 μg/mL as well as showing radical scavenging activity equaling a TEAC value of (3.82 ± 0.14) × 104 mM per gram extract. Subsequent investigation of the crude extract using quadruple high-resolution α-glucosidase/α-amylase/PTP1B/radical scavenging profiling provided a quadruple biochromatogram that allowed direct correlation of the HPLC peaks with one or more of the tested bioactivities. This was used to target subsequent HPLC-HRMS-SPE-NMR analysis towards peaks representing bioactive analytes, and led to identification of a new Diels-Alder adduct named Moracenin E as well as a series of Diels-Alder adducts and isoprenylated flavonoids as potent α-glucosidase and α-amylase inhibitors with IC50 values in the range of 0.60-27.15 μM and 1.22-69.38 μM, respectively. In addition, these compounds and two 2-arylbenzofurans were found to be potent PTP1B inhibitors with IC50 values ranging from 4.04 to 21.67 μM. The high-resolution radical scavenging profile also revealed that almost all of the compounds possess radical scavenging activity. In conclusion the quadruple high-resolution profiling method presented here allowed a detailed profiling of individual constituents in crude root bark extract of M. alba, and the method provides a general tool for detailed mapping of bioactive constituents in polypharmacological herbal remedies.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kenneth Thermann Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anna Katharina Jäger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - John Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|