1
|
Soto M, Pérez‐Ramos P, Soengas RG, Rodríguez‐Solla H. Substrate‐Controlled Hydrogenation of Flavanones: Selective Synthesis of 2′‐Hydroxy‐1,3‐Diarylpropanes and Flavans. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Garcia AR, Oliveira DMP, Jesus JB, Souza AMT, Sodero ACR, Vermelho AB, Leal ICR, Souza ROMA, Miranda LSM, Pinheiro AS, Rodrigues IA. Identification of Chalcone Derivatives as Inhibitors of Leishmania infantum Arginase and Promising Antileishmanial Agents. Front Chem 2021; 8:624678. [PMID: 33520939 PMCID: PMC7841069 DOI: 10.3389/fchem.2020.624678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 01/14/2023] Open
Abstract
Arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea, acting as a key enzyme in the biosynthesis of polyamines. Leishmania growth and survival is dependent on polyamine biosynthesis; therefore, inhibition of Leishmania arginase may be a promising therapeutic strategy. Here, we evaluated a series of thirty-six chalcone derivatives as potential inhibitors of Leishmania infantum arginase (LiARG). In addition, the activity of selected inhibitors against L. infantum parasites was assessed in vitro. Seven compounds exhibited LiARG inhibition above 50% at 100 μM. Among them, compounds LC41, LC39, and LC32 displayed the greatest inhibition values (72.3 ± 0.3%, 71.9 ± 11.6%, and 69.5 ± 7.9%, respectively). Molecular docking studies predicted hydrogen bonds and hydrophobic interactions between the most active chalcones (LC32, LC39, and LC41) and specific residues from LiARG's active site, such as His140, Asn153, His155, and Ala193. Compound LC32 showed the highest activity against L. infantum promastigotes (IC50 of 74.1 ± 10.0 μM), whereas compounds LC39 and LC41 displayed the best results against intracellular amastigotes (IC50 of 55.2 ± 3.8 and 70.4 ± 9.6 μM, respectively). Moreover, compound LC39 showed more selectivity against parasites than host cells (macrophages), with a selectivity index (SI) of 107.1, even greater than that of the reference drug Fungizone®. Computational pharmacokinetic and toxicological evaluations showed high oral bioavailability and low toxicity for the most active compounds. The results presented here support the use of substituted chalcone skeletons as promising LiARG inhibitors and antileishmanial drug candidates.
Collapse
Affiliation(s)
- Andreza R Garcia
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle M P Oliveira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica B Jesus
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Drugs and Medicines, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra M T Souza
- Department of Drugs and Medicines, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina R Sodero
- Department of Drugs and Medicines, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alane B Vermelho
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ivana C R Leal
- Department of Natural Products and Food, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Octavio M A Souza
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S M Miranda
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor A Rodrigues
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Natural Products and Food, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Veale CGL, Müller R. Recent Highlights in Anti-infective Medicinal Chemistry from South Africa. ChemMedChem 2020; 15:809-826. [PMID: 32149446 DOI: 10.1002/cmdc.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Global advancements in biological technologies have vastly increased the variety of and accessibility to bioassay platforms, while simultaneously improving our understanding of druggable chemical space. In the South African context, this has resulted in a rapid expansion in the number of medicinal chemistry programmes currently operating, particularly on university campuses. Furthermore, the modern medicinal chemist has the advantage of being able to incorporate data from numerous related disciplines into the medicinal chemistry process, allowing for informed molecular design to play a far greater role than previously possible. Accordingly, this review focusses on recent highlights in drug-discovery programmes, in which South African medicinal chemistry groups have played a substantive role in the design and optimisation of biologically active compounds which contribute to the search for promising agents for infectious disease.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ronel Müller
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
5
|
Custodio JMF, Moura AF, de Moraes MO, Perez CN, Napolitano HB. On the in silico and in vitro anticancer activity of sulfonamide chalcones: potential JNKK3 inhibitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj05612b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although many compound classes have been studied as JNK inhibitors, we are interested in using chalcones for this purpose. Do different groups drive to different bindings modes to JNK?
Collapse
Affiliation(s)
- Jean M. F. Custodio
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
- Instituto de Química
| | - Andrea F. Moura
- Núcleo de Pesquisas e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
- Núcleo de Pesquisa em Biotecnologia e Biodiversidade – BIOTEC
| | - Manoel O. de Moraes
- Núcleo de Pesquisas e Desenvolvimento de Medicamentos
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | | |
Collapse
|
7
|
Brown DP, Saklani P, Luo J. Microwave-Assisted Synthesis and Characterization of Novel Sulfonamide-β-Lactam Conjugates. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- David P. Brown
- Department of Chemistry, St. John's College of Liberal Arts and Sciences; St. John's University; Queens New York 11439 USA
| | - Pooja Saklani
- Department of Chemistry, St. John's College of Liberal Arts and Sciences; St. John's University; Queens New York 11439 USA
| | - Jiawei Luo
- Department of Chemistry, St. John's College of Liberal Arts and Sciences; St. John's University; Queens New York 11439 USA
| |
Collapse
|