1
|
Chen L, Wang J, Yang Y, Wang H, Xu A, Ma J, Wang Y, Xu P. Identifying the temporal contributors and their interactions during dynamic formation of black tea cream. Food Chem 2024; 448:139138. [PMID: 38569407 DOI: 10.1016/j.foodchem.2024.139138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Tea cream formed in hot and strong tea infusion while cooling deteriorates quality and health benefits of tea. However, the interactions among temporal contributors during dynamic formation of tea cream are still elusive. Here, by deletional recombination experiments and molecular dynamics simulation, it was found that proteins, caffeine (CAF), and phenolics played a dominant role throughout the cream formation, and the contribution of amino acids was highlighted in the early stage. Furthermore, CAF was prominent due to its extensive binding capacity and the filling complex voids property, and caffeine-theaflavins (TFs) complexation may be the core skeleton of the growing particles in black tea infusion. In addition to TFs, the unidentified phenolic oxidation-derived products (PODP) were confirmed to contribute greatly to the cream formation.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Yijun Yang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Huajie Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Anan Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Junhui Ma
- Lishui Agriculture and Rural Affairs Bureau, Lishui 323000, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.
| |
Collapse
|
2
|
Mattoli L, Pelucchini C, Fiordelli V, Burico M, Gianni M, Zambaldi I. Natural complex substances: From molecules to the molecular complexes. Analytical and technological advances for their definition and differentiation from the corresponding synthetic substances. PHYTOCHEMISTRY 2023; 215:113790. [PMID: 37487919 DOI: 10.1016/j.phytochem.2023.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
Natural complex substances (NCSs) are a heterogeneous family of substances that are notably used as ingredients in several products classified as food supplements, medical devices, cosmetics and traditional medicines, according to the correspondent regulatory framework. The compositions of NCSs vary widely and hundreds to thousands of compounds can be present at the same time. A key concept is that NCSs are much more than the simple sum of the compounds that constitute them, in fact some emerging phenomena are the result of the supramolecular interaction of the constituents of the system. Therefore, close attention should be paid to produce and characterize these systems. Today many natural compounds are produced by chemical synthesis and are intentionally added to NCSs, or to formulated natural products, to enhance their properties, lowering their production costs. Market analysis shows a tendency of people to use products made with NCSs and, currently, products made with ingredients of natural origin only are not conveniently distinguishable from those containing compounds of synthetic origin. Furthermore, the uncertainty of the current European regulatory framework does not allow consumers to correctly differentiate and identify products containing only ingredients of natural origin. The high demand for specific and effective NCSs and their high-cost offer on the market, create the conditions to economically motivated sophistications, characterized by the addition of a cheap material to a more expensive one, just to increase profit. This type of practice can concern both the addition of less valuable natural materials and the addition of pure artificial compounds with the same structure as those naturally present. In this scenario, it becomes essential for producers of natural products to have advanced analytical techniques to evaluate the effective naturalness of NCSs. In fact, synthetically obtained compounds are not identical to their naturally occurring counterparts, due to the isotopic composition or chirality, as well as the presence of different trace metabolites (since pure substances in nature do not exist). For this reason, in this review, the main analytical tests that can be performed to differentiate natural compounds from their synthetic counterparts will be highlighted and the main analytical technologies will be described. At the same time, the main fingerprint techniques useful for characterizing the complexity of the NCSs, also allowing their identification and quali-quantitative evaluation, will be described. Furthermore, NCSs can be produced through different manufacturing processes, not all of which are on the same level of quality. In this review the most suitable technologies for green processes that operate according to physical extraction principles will be presented, as according to the authors they are the ones that come closest to creating more life-cycle compatible NCSs and that are well suited to the European green deal, a strategy with the aim of transforming the EU into a sustainable and resource-efficient society by 2050.
Collapse
Affiliation(s)
- Luisa Mattoli
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy.
| | | | | | - Michela Burico
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| | - Ilaria Zambaldi
- Innovation & Medical Science, Aboca SpA, Sansepolcro, AR, Italy
| |
Collapse
|
3
|
Zhong N, Zhao X, Yu P, Huang H, Bao X, Li J, Zheng H, Xiao L. Characterization of the Sensory Properties and Quality Components of Huangjin Green Tea Based on Molecular Sensory-Omics. Foods 2023; 12:3234. [PMID: 37685167 PMCID: PMC10486783 DOI: 10.3390/foods12173234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Huangjin green tea (HJC) is one of the most famous regional green teas in China, and has gained attention for its unique flavor. Research on HJC has focused mainly on the synthesis of L-theanine, with fewer studies concentrating on sensory characteristics. In this study, molecular sensory science techniques, including color analysis, gas chromatography-ion mobility spectrometry, and E-tongue, were used to characterize the sensory properties of HJC, with Fuding Dabai and Anji Baicha teas used as conventional and high amino acid controls, respectively. The sensory characteristics and main quality components of HJC lie somewhere between these two other teas, and somewhat closer to the conventional control. They were difficult to distinguish by color, but significant differences exist in terms of volatile organic compounds (VOCs), E-tongue values on bitterness and astringency, and their contents of major taste components. VOCs such as (E)-2-octenal, linalool, ethyl acrylate, ethyl acetate, and 2-methyl-3-furanethiol were found to be the main differential components that contributed to aroma, significantly influencing the tender chestnut aroma of HJC. Free amino acids, tea polyphenols, and ester catechins were the main differential components responsible for taste, and its harmonious phenol-to-ammonia ratio was found to affect the fresh, mellow, heavy, and brisk taste of HJC.
Collapse
Affiliation(s)
- Ni Zhong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xi Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Penghui Yu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Hao Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xiaocun Bao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Jin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Hongfa Zheng
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Mattoli L, Gianni M, Burico M. Mass spectrometry-based metabolomic analysis as a tool for quality control of natural complex products. MASS SPECTROMETRY REVIEWS 2023; 42:1358-1396. [PMID: 35238411 DOI: 10.1002/mas.21773] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 06/07/2023]
Abstract
Metabolomics is an area of intriguing and growing interest. Since the late 1990s, when the first Omic applications appeared to study metabolite's pool ("metabolome"), to understand new aspects of the global regulation of cellular metabolism in biology, there have been many evolutions. Currently, there are many applications in different fields such as clinical, medical, agricultural, and food. In our opinion, it is clear that developments in metabolomics analysis have also been driven by advances in mass spectrometry (MS) technology. As natural complex products (NCPs) are increasingly used around the world as medicines, food supplements, and substance-based medical devices, their analysis using metabolomic approaches will help to bring more and more rigor to scientific studies and industrial production monitoring. This review is intended to emphasize the importance of metabolomics as a powerful tool for studying NCPs, by which significant advantages can be obtained in terms of elucidation of their composition, biological effects, and quality control. The different approaches of metabolomic analysis, the main and basic techniques of multivariate statistical analysis are also briefly illustrated, to allow an overview of the workflow associated with the metabolomic studies of NCPs. Therefore, various articles and reviews are illustrated and commented as examples of the application of MS-based metabolomics to NCPs.
Collapse
Affiliation(s)
- Luisa Mattoli
- Department of Metabolomics & Analytical Sciences, Aboca SpA Società Agricola, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Department of Metabolomics & Analytical Sciences, Aboca SpA Società Agricola, Sansepolcro, AR, Italy
| | - Michela Burico
- Department of Metabolomics & Analytical Sciences, Aboca SpA Società Agricola, Sansepolcro, AR, Italy
| |
Collapse
|
5
|
Gancar M, Kurin E, Bednarikova Z, Marek J, Mucaji P, Nagy M, Gazova Z. Green tea leaf constituents inhibit the formation of lysozyme amyloid aggregates: An effect of mutual interactions. Int J Biol Macromol 2023; 242:124856. [PMID: 37178892 DOI: 10.1016/j.ijbiomac.2023.124856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Amyloidoses represent a group of pathological conditions characterized by amyloid fibrils accumulating in the form of deposits in intra- or extracellular space, leading to tissue damage. The lysozyme from hen egg-white (HEWL) is often used as a universal model protein to study the anti-amyloid effects of small molecules. The in vitro anti-amyloid activity and mutual interactions of green tea leaf constituents: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), gallic acid (GA), caffeine (CF) and their equimolar mixtures were studied. The inhibition of HEWL amyloid aggregation was monitored by a Thioflavin T fluorescence assay and atomic force microscopy (AFM). The interactions of the analyzed molecules with HEWL were interpreted by ATR-FTIR and protein-small ligand docking studies. EGCG was the only substance efficiently inhibiting amyloid formation (IC50 ~ 193 μM), slowing the aggregation process, reducing the number of fibrils and partially stabilizing the secondary structure of HEWL. Compared to EGCG alone, EGCG-containing mixtures displayed lower overall anti-amyloid efficacy. The decrease in efficiency results from (a) the spatial interference of GA, CF and EC with EGCG while binding to HEWL, (b) the propensity of CF to form a less active adduct with EGCG, which participates in interactions with HEWL in parallel with pure EGCG. This study confirms the importance of interaction studies, revealing the possible antagonistic behavior of molecules when combined.
Collapse
Affiliation(s)
- Miroslav Gancar
- Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Elena Kurin
- Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia.
| | - Zuzana Bednarikova
- Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Jozef Marek
- Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Pavel Mucaji
- Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Milan Nagy
- Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 832 32 Bratislava, Slovakia
| | - Zuzana Gazova
- Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia.
| |
Collapse
|
6
|
Nakbi A, Bouzid M, Khemis IB, Aouaini F, Hassen AB, Torkia YB, Lamine AB. A putative biological adsorption process of binary mixture taste of sucrose and caffeine on human neuroreceptor site by the use of statistical physics modeling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Gu X, Meng Y, Jin F, Wang L, Ma J, Wang X, Zhao Y, Shi J, Li J, Zhao Y, Tu P, Zheng J. Puerin III alleviates glucose and lipid metabolism disorders in high-fat high-sucrose diet-induced hyperlipidemic and hyperglycemic ApoE−/− mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Zhang G, Cao Y, Mei S, Guo Y, Gong S, Chu Q, Chen P. Another perspective to explain green tea cream: utilizing engineered catechin-caffeine complex. Food Res Int 2022; 158:111542. [DOI: 10.1016/j.foodres.2022.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
|
9
|
Moracci L, Sensi F, Biccari A, Crotti S, Gaio E, Benetti F, Traldi P, Pucciarelli S, Agostini M. An investigation on [5 fluorouracil and epigallocatechin-3-gallate] complex activity on HT-29 cell death and its stability in gastrointestinal fluid. Oncotarget 2022; 13:476-489. [PMID: 35251495 PMCID: PMC8893781 DOI: 10.18632/oncotarget.28207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Recently an enhancement of the sensitivity of colorectal cancer (CRC) cells by 5-fluorouracil (5FU) due to the concurrent treatment with epigallocatechin-3-gallate (EGCG) has been found. In the present paper, to investigate on this aspect, adenocarcinoma cells HT29 were treated with 5FU, EGCG and an equimolar mixture of 5FU and EGCG ([5FU+EGCG]) and cell viability was determined. While 5FU exhibits a clear activity, EGCG alone does not express any activity. However by treating the cells with [5FU+EGCG] a strong effect of EGCG is evidenced: the sensitivity of HT29 cells to 5FU was increased by 12-fold. A simulation of the behavior of [5FU+EGCG] in different compartments of the gastrointestinal digestion model was also performed. 5FU and EGCG solubilized into a mixture of digestive fluids analyzed by mass spectrometry did not lead to signals of 5FU, EGCG and the related complex, while by diluting the solution they become detectable. On the contrary, when 5FU and EGCG are submitted to the step-by-step digestion model procedure, the analysis did not show the presence of 5FU, EGCG and [5FU+EGCG]. This behaviour could be ascribed to the instability of these compounds due to the too severe digestion conditions and/or to the complexity of the matrix which could lead in ESI conditions to the suppression of the signals of the analytes of interest.
Collapse
Affiliation(s)
- Laura Moracci
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Francesca Sensi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Venice, Italy
| | - Andrea Biccari
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Sara Crotti
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Elisa Gaio
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Federico Benetti
- ECSIN-European Center for the Sustainable Impact of Nanotechnology, ECAMRICERT SRL, Padova, Italy
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Salvatore Pucciarelli
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.,General Surgical Clinic 3, Department of Surgical, Oncological and Gastroentrological Sciences, University of Padua, Padova, Italy
| |
Collapse
|
10
|
Moracci L, Crotti S, Traldi P, Agostini M. Mass spectrometry in the study of molecular complexes between 5-fluorouracil and catechins. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4682. [PMID: 33448570 DOI: 10.1002/jms.4682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 06/12/2023]
Abstract
5-Fluorouracil (5FU) is a widely employed antineoplastic agent that acts as antimetabolite. However, 5FU activity is strongly reduced against a subset of cancer cells called cancer stem cells (CSCs), which are believed to be responsible for chemoresistance and tumour recurrence. It was found that epigallocatechin-3-gallate (EGCG), the most abundant catechin present in green tea extract, suppresses CSCs grown in various cancers. This chemosensitizing effect of EGCG was investigated in 5FU-resistant (5FUR) CRC cells, showing that EGCG enhances 5FU-induced cytotoxicity. However, the real mechanism of an improved 5FU chemosensitivity in the presence of EGCG was not evaluated. Considering the capability of catechins to form bimolecular noncovalent complexes, in the present study, the interaction of catechins and 5FU was studied by different mass spectrometric approaches. The ESI(+) and ESI(-) spectra of [5FU-catechin] mixtures were studied, showing the formation of protonated and deprotonated bimolecular complexes, whose nature was confirmed by MS/MS experiments (product and precursor ion scans). To exclude the possible origin of these species as ESI artefacts, a further series of experiments were performed by high-resolution liquid chromatography-mass spectrometry. By this approach, bimolecular complexes have been detected at retention times different from those of free 5FU and catechins, proving their presence in the original solution. Analogous studies were performed on 5FU-green tea extract mixtures, showing that 5FU leads to complexes not only with EGCG but also with other catechins. These molecular species, differently to free 5FU drug alone, would in principle possess a new biological activity and could be an explanation of the described activity cited above.
Collapse
Affiliation(s)
- Laura Moracci
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Sara Crotti
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, 35127, Italy
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Moracci L, Traldi P, Agostini M. MASS SPECTROMETRY FOR A HOLISTIC VIEW OF NATURAL EXTRACTS OF PHYTOTHERAPEUTIC INTEREST. MASS SPECTROMETRY REVIEWS 2020; 39:553-573. [PMID: 31930557 DOI: 10.1002/mas.21619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
In the study of natural products new strategies which favor a holistic approach, integrating the traditional reductionist methods usually employed, have been proposed. In this frame, the studies carried out by us in the last decade show that fingerprints, mainly obtained by electrospray ionization mass spectrometry (ESI-MS), lead to the characterization of natural extracts from different botanical species but also of phytotherapeutic products constituted by mixtures of extracts from different plants. Laser desorption ionization and matrix-assisted laser desorption ionization techniques were also employed and by the use of different matrices some complementary results were achieved. Results obtained by standard spectrophotometric and liquid chromatography methods were compared with those achieved by direct infusion of the extract in ESI-MS conditions, indicating an excellent agreement between the two approaches. The findings of these researches were considered in the frame of complex systems theory, investigating how relationships between a system's parts can give rise to its collective behaviors and how the system interacts and forms relationships with its environment. In this view, the peculiar pharmacological behavior of biologically active natural compounds can be justified by the occurrence of molecular interactions due to the high complexity of the natural matrix. Some of these interactions have been widely studied in the case of green tea extracts (GTEs) proving unequivocally the presence of caffeine/catechin complexes in GTE samples. The presence of bimolecular complexes has been observed also in the case of Ceylon tea and Mate extracts. These data indicate that the formation of complexes in natural extracts is a common behavior and their presence must be considered in the description of natural extracts and, consequently, in their biological activity. ©2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Laura Moracci
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I35127, Padova, Italy
- Department of Surgical, Surgical Clinic, Oncological and Gastroenterological Sciences, University of Padova, I35122, Padova, Italy
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I35127, Padova, Italy
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I35127, Padova, Italy
- Department of Surgical, Surgical Clinic, Oncological and Gastroenterological Sciences, University of Padova, I35122, Padova, Italy
| |
Collapse
|
12
|
Crotti S, D'Aronco S, Moracci L, Tisato F, Porchia M, Mattoli L, Burico M, Bedont S, Traldi P, Agostini M. Evidence of noncovalent complexes in some natural extracts: Ceylon tea and mate extracts. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4459. [PMID: 31663260 DOI: 10.1002/jms.4459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Considering the high complexity of natural extracts, because of the presence of organic molecules of different chemical nature, the possibility of formation of noncovalent complexes should be taken into account. In a previous investigation, the formation of bimolecular complexes between caffeine and catechins in green tea extracts (GTE) has been experimentally proven by means of mass spectrometric and 1 H nuclear magnetic resonance experiments. The same approaches have been employed in the present study to evaluate the presence of bimolecular complexes in Ceylon tea and mate extracts. The obtained results show that in the case of Ceylon tea extracts, protonated theaflavin is detectable, together with theaflavin/caffein complexes, while caffeine/catechin complexes, already detected in green tea, are still present but at lower concentration. This aspect is evidenced by the comparison of precursor ion scans performed on protonated caffeine for the two extracts. The spectra obtained in these conditions for GTE and Ceylon tea show that the complexes of caffeine with epigallocatechin (EGC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG), highy abundant in the case of GTE (signal-to-chemical noise ratio in the range 50-100), are negligible (signal-to-chemical noise ratio in the range 2-3) in the case of Ceylon tea. Mate extracts show the formation of bimolecular complexes involving caffeine but not catechins, and chlorogenic acid becomes responsible for other complex formation. Under positive ion and negative ion conditions, accurate mass measurements allow the identification of malealdehyde, chlorogenic acid, caffeine, two isomers of dicaffeoylquinic acid, rutin, and kaempferol-3-O-rutinoside. These data indicate that the formation of complexes in natural extracts is a common behavior, and their presence must be considered in the description of natural extracts and, consequently, in their biological activity.
Collapse
Affiliation(s)
- Sara Crotti
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Sara D'Aronco
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35122, Padova, Italy
| | - Laura Moracci
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Francesco Tisato
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council-CNR, 35127, Padova, Italy
| | - Marina Porchia
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council-CNR, 35127, Padova, Italy
| | - Luisa Mattoli
- Ricerca Fitochimica, Aboca S.p.A. Società Agricola, 52037, Località Aboca 20, San Sepolcro, Arezzo, Italy
| | - Michela Burico
- Ricerca Fitochimica, Aboca S.p.A. Società Agricola, 52037, Località Aboca 20, San Sepolcro, Arezzo, Italy
| | - Stella Bedont
- Ricerca Fitochimica, Aboca S.p.A. Società Agricola, 52037, Località Aboca 20, San Sepolcro, Arezzo, Italy
| | - Pietro Traldi
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127, Padova, Italy
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35122, Padova, Italy
| |
Collapse
|
13
|
Gancar M, Kurin E, Bednarikova Z, Marek J, Mucaji P, Nagy M, Gazova Z. Amyloid Aggregation of Insulin: An Interaction Study of Green Tea Constituents. Sci Rep 2020; 10:9115. [PMID: 32499589 PMCID: PMC7272432 DOI: 10.1038/s41598-020-66033-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Exogenous insulin, used as a therapeutic agent for diabetes, forms insoluble deposits containing amyloid fibrillar structures near the administration site. We have analyzed the in vitro anti-amyloid activity of four green tea constituents: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), gallic acid (GA), caffeine (CF), and their equimolar mixtures. Regarding individually tested compounds, only EGCG inhibited the fibrillization process. The individual EC, GA, and CF molecules were ineffective. The presence of EGCG in equimolar combinations with GA, EC, or CF was required for the inhibitory activity of most mixtures. Molecular docking revealed that EGCG interacts with an essential amyloidogenic region of insulin chain B. Individually inactive GA had a potentiating effect on the activity of EGCG. In contrast, EC and CF had a negative impact on the activity of the mixtures. We have observed diverse morphology and the amount of insulin amyloid aggregates formed in the presence of studied compounds. The distinct types of amyloid aggregates created in vitro in the presence of EGCG and other green tea constituents were characterized. Results indicate that the biological activity of individual molecules is not directly applicable to the pooled samples effects prediction.
Collapse
Affiliation(s)
- Miroslav Gancar
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Elena Kurin
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Jozef Marek
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia
| | - Pavel Mucaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32, Bratislava, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia.
| |
Collapse
|
14
|
Koss-Mikołajczyk I, Baranowska M, Todorovic V, Albini A, Sansone C, Andreoletti P, Cherkaoui-Malki M, Lizard G, Noonan D, Sobajic S, Bartoszek A. Prophylaxis of Non-communicable Diseases: Why Fruits and Vegetables may be Better Chemopreventive Agents than Dietary Supplements Based on Isolated Phytochemicals? Curr Pharm Des 2019; 25:1847-1860. [DOI: 10.2174/1381612825666190702093301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 12/23/2022]
Abstract
The World Health Organization (WHO) report from 2014 documented that non-communicable socalled civilization diseases such as cardiovascular disease, chronic respiratory diseases, cancer or type 2 diabetes are responsible for over 50% of all premature deaths in the world. Research carried out over the past 20 years has provided data suggesting that diet is an essential factor influencing the risk of development of these diseases. The increasing knowledge on chemopreventive properties of certain food ingredients, in particular, those of plant origin, opened the discussion on the possibility to use edible plants or their active components in the prevention of these chronic diseases. Health-promoting properties of plant foods are associated with the presence of secondary metabolites that can affect many biological mechanisms of critical importance to the proper functioning of the human organism. Particularly, there have been numerous investigations indicating strong physiological effects of bioactive plant phenols belonging to the flavonoid family. These observations initiated mass production of dietary supplements containing flavonoids commercialized under the name antioxidants, even if their chemical properties did not justify such a term. However, epidemiological studies revealed that isolated bioactive phytochemicals are not as effective as fruits and vegetables containing these substances whereas they are of interest of the functional food industry. In this paper, the critical assessment of reasons for this turn of events has been attempted and the concept of food synergy has been suggested as a future strategy of dietary chemoprevention.
Collapse
Affiliation(s)
- Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| | - Monika Baranowska
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| | - Vanja Todorovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Studentski trg 1, Beograd, GabrielaNarutowicza 11/12, 80-233, Gdanski, Serbia
| | - Adriana Albini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Gérard Lizard
- BioPeroxIL Laboratory, Universite de Bourgogne-Franche Comte, France
| | | | - Sladjana Sobajic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Studentski trg 1, Beograd, GabrielaNarutowicza 11/12, 80-233, Gdanski, Serbia
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland
| |
Collapse
|
15
|
Cheng K, Chi NN, Liu JD. Green tea extract for treatment of cancers: A systematic review protocol. Medicine (Baltimore) 2019; 98:e15117. [PMID: 30985669 PMCID: PMC6485720 DOI: 10.1097/md.0000000000015117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous clinical studies suggested that green tea extract (GTE) may benefit patients with a variety of cancers. However, its efficacy is still inconclusive. Thus, the objective of this study will systematically collate the clinical studies testing its efficacy and safety for cancers. METHODS We will perform a systematic review of clinical studies assessing the efficacy of GTE in variety of cancers. We will search Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, MEDILINE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Allied and Complementary Medicine Database (AMED), and Chinese Biomedical Literature Database (CBM) using a comprehensive strategy. We will also screen the reference lists of relevant studies to identify any additional studies for potential inclusion. All databases will be searched up to February 1, 2019. All eligible case-control studies and randomized controlled trials will be included in this study. Two independent authors will review all searched literature. Upon inclusion of trials, we will extract data by using a predefined standardized form. The risk of bias assessment will be evaluated by using Cochrane risk of bias tool. We will use RevMan 5.3 software to pool the data and carry out meta-analysis. RESULTS The primary outcome includes overall response rate. The secondary outcomes comprise of overall survival, progression-free survival, the disease control rate, and any adverse events. CONCLUSIONS The results of this study will contribute to the understanding of the efficacy of GTE in the setting of cancers and promote future research of GTE in patients with cancers. DISSEMINATION AND ETHICS The results of this systematic review are expected to be published through peer-reviewed journals. This study does not need ethic approval, because it does not utilize individual patient data. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019125111.
Collapse
Affiliation(s)
- Kai Cheng
- Second Ward of Gastroenterology Department
| | | | - Jun-Dong Liu
- Department of Pharmacy, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|