1
|
Wang Y, Zhou L, Pan X, Liao Z, Qi N, Sun M, Zhang H, Ju J, Ma J. Metabolic Blockade-Based Genome Mining of Sea Anemone-Associated Streptomyces sp. S1502 Identifies Atypical Angucyclines WS-5995 A-E: Isolation, Identification, Biosynthetic Investigation, and Bioactivities. Mar Drugs 2024; 22:195. [PMID: 38786587 PMCID: PMC11122949 DOI: 10.3390/md22050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Marine symbiotic and epiphyte microorganisms are sources of bioactive or structurally novel natural products. Metabolic blockade-based genome mining has been proven to be an effective strategy to accelerate the discovery of natural products from both terrestrial and marine microorganisms. Here, the metabolic blockade-based genome mining strategy was applied to the discovery of other metabolites in a sea anemone-associated Streptomyces sp. S1502. We constructed a mutant Streptomyces sp. S1502/Δstp1 that switched to producing the atypical angucyclines WS-5995 A-E, among which WS-5995 E is a new compound. A biosynthetic gene cluster (wsm) of the angucyclines was identified through gene knock-out and heterologous expression studies. The biosynthetic pathways of WS-5995 A-E were proposed, the roles of some tailoring and regulatory genes were investigated, and the biological activities of WS-5995 A-E were evaluated. WS-5995 A has significant anti-Eimeria tenell activity with an IC50 value of 2.21 μM. The production of antibacterial streptopyrroles and anticoccidial WS-5995 A-E may play a protective role in the mutual relationship between Streptomyces sp. S1502 and its host.
Collapse
Affiliation(s)
- Yuyang Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Le Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
| | - Xiaoting Pan
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhangjun Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| |
Collapse
|
2
|
Zhao M, Yang Z, Li X, Liu Y, Zhang Y, Zhang M, Li Y, Wang X, Deng Z, Hong K, Zhu D. Development of Integrated Vectors with Strong Constitutive Promoters for High-Yield Antibiotic Production in Mangrove-Derived Streptomyces. Mar Drugs 2024; 22:94. [PMID: 38393065 PMCID: PMC10890193 DOI: 10.3390/md22020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
It is important to improve the production of bioactive secondary products for drug development. The Escherichia coli-Streptomyces shuttle vector pSET152 and its derived vector pIB139 containing a strong constitutive promoter ermEp* are commonly used as integrative vectors in actinomycetes. Four new integrative vectors carrying the strong constitutive promoter kasOp*, hrdBp, SCO5768p, and SP44, respectively, were constructed and proven to be functional in different mangrove-derived Streptomyces host strains by using kanamycin resistance gene neo as a reporter. Some biosynthetic genes of elaiophylins, azalomycin Fs, and armeniaspirols were selected and inserted into these vectors to overexpress in their producers including Streptomyces sp. 219807, Streptomyces sp. 211726, and S. armeniacus DSM 43125, resulting in an approximately 1.1-1.4-fold enhancement of the antibiotic yields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Z.); (Z.Y.); (X.L.); (Y.L.); (Y.Z.); (M.Z.); (Y.L.); (X.W.); (Z.D.)
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (M.Z.); (Z.Y.); (X.L.); (Y.L.); (Y.Z.); (M.Z.); (Y.L.); (X.W.); (Z.D.)
| |
Collapse
|
3
|
Liang Z, Yu Y, Zhang L, Xue G, Liu M, Zhang Y, Huang M, Cai L, Cai S. Visible-Light-Enabled Catalytic Approach to N, O-Spirocycles through Amidyl Radical Addition/Cyclization. Org Lett 2024; 26:298-303. [PMID: 38153355 DOI: 10.1021/acs.orglett.3c03855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A rational combination of photoredox catalyst anthraquinone and hydrogen atom transfer (HAT) catalyst methyl thioglycolate allows for the rapid and straightforward conversion of a range of 2-amidated acetylenic alcohols to multifunctional N,O-spirocycles under visible light irradiation. With oxygen as the sole terminal oxidant, these reactions can be carried out efficiently at room temperature without the involvement of transition metals or strong oxidants. The successful application of this mild catalytic strategy in the late-stage functionalization of bioactive skeletons further highlights its practical value.
Collapse
Affiliation(s)
- Zhihui Liang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yushen Yu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Lele Zhang
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Guotao Xue
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Min Liu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Yirui Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Lina Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
4
|
Heng E, Lim YW, Leong CY, Ng VWP, Ng SB, Lim YH, Wong FT. Enhancing armeniaspirols production through multi-level engineering of a native Streptomyces producer. Microb Cell Fact 2023; 22:84. [PMID: 37118806 PMCID: PMC10142417 DOI: 10.1186/s12934-023-02092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/11/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Nature has provided unique molecular scaffolds for applications including therapeutics, agriculture, and food. Due to differences in ecological environments and laboratory conditions, engineering is often necessary to uncover and utilize the chemical diversity. Although we can efficiently activate and mine these often complex 3D molecules, sufficient production of target molecules for further engineering and application remain a considerable bottleneck. An example of these bioactive scaffolds is armeniaspirols, which are potent polyketide antibiotics against gram-positive pathogens and multi-resistance gram-negative Helicobacter pylori. Here, we examine the upregulation of armeniaspirols in an alternative Streptomyces producer, Streptomyces sp. A793. RESULTS Through an incidental observation of enhanced yields with the removal of a competing polyketide cluster, we observed seven-fold improvement in armeniaspirol production. To further investigate the improvement of armeniaspirol production, we examine upregulation of armeniaspirols through engineering of biosynthetic pathways and primary metabolism; including perturbation of genes in biosynthetic gene clusters and regulation of triacylglycerols pool. CONCLUSION With either overexpression of extender unit pathway or late-stage N-methylation, or the deletion of a competing polyketide cluster, we can achieve seven-fold to forty nine-fold upregulation of armeniaspirol production. The most significant upregulation was achieved by expression of heterologous fatty acyl-CoA synthase, where we observed not only a ninety seven-fold increase in production yields compared to wild type, but also an increase in the diversity of observed armeniaspirol intermediates and analogs.
Collapse
Affiliation(s)
- Elena Heng
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Singapore
| | - Yi Wee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Veronica W P Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 2, Nanos, Singapore, 138669, Singapore
| | - Yee Hwee Lim
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore.
| | - Fong Tian Wong
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #07-06, Proteos, Singapore, 138673, Singapore.
- Chemical Biotechnology and Biocatalysis, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros, #07-01, Singapore, 138665, Singapore.
| |
Collapse
|
5
|
Darnowski MG, Lanosky TD, Paquette AR, Boddy CN. Armeniaspirol analogues disrupt the electrical potential (ΔΨ) of the proton motive force. Bioorg Med Chem Lett 2023; 84:129210. [PMID: 36858079 DOI: 10.1016/j.bmcl.2023.129210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The armeniaspirol family of natural product antibiotics have been shown to inhibit the ATP-dependent proteases ClpXP and ClpYQ and disrupt membrane potential through shuttling of protons across the membrane. Herein we investigate their ability to disrupt the proton motive force (PMF). We show, using a voltage sensitive, that armeniaspiols disrupt the electrical membrane potential (ΔΨ) component of the PMF and not the transmembrane proton gradient (ΔpH). Using checkerboard assays, we confirm this by showing antagonism, with kanamycin, an antibiotic that required ΔΨ for penetration. By evaluating the antibiotic activity and disruption of the PMF by sixteen armeniaspirol analogs, we find that disruption of the PMF is necessary but not sufficient for antibiotic activity. Analogs that are potent disruptors of the PMF without possessing the ability to inhibit ClpXP and ClpYQ are not potent antibiotics. Thus we propose that the armeniaspirols utilize a dual mechanism of action where they disrupt PMF and inhibit the ATP-dependent proteases ClpXP and ClpYQ. This type of dual mechanism has been observed in other natural product-based antibiotics, most notably chelocardin.
Collapse
Affiliation(s)
- Michael G Darnowski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Taylor D Lanosky
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - André R Paquette
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5 Canada.
| |
Collapse
|
6
|
Pyrrole-Containing Alkaloids from a Marine-Derived Actinobacterium Streptomyces zhaozhouensis and Their Antimicrobial and Cytotoxic Activities. Mar Drugs 2023; 21:md21030167. [PMID: 36976216 PMCID: PMC10054583 DOI: 10.3390/md21030167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Two new alkaloids, streptopyrroles B and C (1 and 2), were discovered through a chemical investigation of the ethyl acetate (EtOAc) extract from a marine-derived actinomycete, Streptomyces zhaozhouensis, along with four known analogs (3–6). The structures of the new compounds were elucidated by spectroscopic analysis (HR-ESIMS, 1D, and 2D NMR) and a comparison of their experimental data with literature values. The new compounds were evaluated for their antimicrobial activity by standard broth dilution assay, and the tested compounds showed significant activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 0.7 to 2.9 µM, and kanamycin was used as a positive control with MIC values ranging from <0.5 to 4.1 µM. Additionally, 1, 3, and 5 were evaluated for their cytotoxicity against six tumor cell lines by sulforhodamine B (SRB) assay, and these compounds displayed cytotoxic activities against all the tested cell lines, with concentration causing 50% cell growth inhibition (GI50) values ranging from 4.9 to 10.8 µM, while a positive control, adriamycin, showed GI50 values of 0.13–0.17 µM.
Collapse
|
7
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
8
|
Liu C, Yamamura H, Hayakawa M, Zhang Z, Oku N, Igarashi Y. Plant growth-promoting and antimicrobial chloropyrroles from a rare actinomycete of the genus Catellatospora. J Antibiot (Tokyo) 2022; 75:655-661. [PMID: 36195750 DOI: 10.1038/s41429-022-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/08/2022]
Abstract
Two new chloropyrroles, designated catellatopyrroles A (1) and B (2), along with 2-(2'-hydroxybenzoyl)pyrrole (3), were isolated from a culture extract of an actinomycete of the genus Catellatospora. The structures of 1-3 were elucidated through interpretation of NMR and MS data. Compounds 1 and 2 are the first chloropyrroles substituted by an aliphatic acyl group at the 5-position. Compounds 1-3 promoted root elongation of germinated lettuce seeds at 1-10 μM. While all compounds inhibited the growth of Gram-positive bacteria, activity against Gram-negative bacterium Rhizobium radiobacter and yeasts Candida albicans and Saccharomyces cerevisiae was varied. Compounds 1 and 2 were moderately cytotoxic against P388 cells.
Collapse
Affiliation(s)
- Chang Liu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Hideki Yamamura
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, 400-8510, Yamanashi, Japan
| | - Masayuki Hayakawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu, 400-8510, Yamanashi, Japan
- Yamanashi Prefectural University, Iida 5-11-1, Kofu, Yamanashi, 400-0035, Japan
| | - Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
9
|
Zheng M, Zhang J, Zhang W, Yang L, Yan X, Tian W, Liu Z, Lin Z, Deng Z, Qu X. An Atypical Acyl‐CoA Synthetase Enables Efficient Biosynthesis of Extender Units for Engineering a Polyketide Carbon Scaffold. Angew Chem Int Ed Engl 2022; 61:e202208734. [DOI: 10.1002/anie.202208734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
10
|
Zheng M, Zhang J, Zhang W, Yang L, Yan X, Tian W, Liu Z, Lin Z, Deng Z, Qu X. An Atypical Acyl‐CoA Synthetase Enables Efficient Biosynthesis of Extender Units for Engineering a Polyketide Carbon Scaffold. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wan Zhang
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Lu Yang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xiaoli Yan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zhihao Liu
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|
11
|
Darnowski MG, Lanosky TD, Labana P, Brazeau-Henrie JT, Calvert ND, Dornan MH, Natola C, Paquette AR, Shuhendler AJ, Boddy CN. Armeniaspirol analogues with more potent Gram-positive antibiotic activity show enhanced inhibition of the ATP-dependent proteases ClpXP and ClpYQ. RSC Med Chem 2022; 13:436-444. [PMID: 35647545 PMCID: PMC9020616 DOI: 10.1039/d1md00355k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Antibiotics with fundamentally new mechanisms of action such as the armeniaspirols, which target the ATP-dependent proteases ClpXP and ClpYQ, must be developed to combat antimicrobial resistance. While the mechanism of action of armeniaspirol against Gram-positive bacteria is understood, little is known about the structure-activity relationship for its antibiotic activity. Based on the preliminary data showing that modifications of armeniaspirol's N-methyl group increased antibiotic potency, we probed the structure-activity relationship of N-alkyl armeniaspirol derivatives. A series of focused derivatives were synthesized and evaluated for antibiotic activity against clinically relevant pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Replacement of the N-methyl with N-hexyl, various N-benzyl, and N-phenethyl substituents led to substantial increases in antibiotic activity and potency for inhibition of both ClpYQ and ClpXP. Docking studies identified binding models for ClpXP and ClpYQ that were consistent with the inhibition data. This work confirms the role of ClpXP and ClpYQ in the mechanism of action of armeniaspirol and provides important lead compounds for further antibiotic development.
Collapse
Affiliation(s)
- Michael G. Darnowski
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Taylor D. Lanosky
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Puneet Labana
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Jordan T. Brazeau-Henrie
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Nicholas D. Calvert
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Mark H. Dornan
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Claudia Natola
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - André R. Paquette
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Adam J. Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canadacboddy!uottawa.ca
| |
Collapse
|
12
|
Jiang L, Yan S, Dong J, Ye L, Cheng Y, Chu X. Catalyst‐free one‐pot three‐component rapid synthesis of polysubstituted pyrroles by liquid‐assisted grinding. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ling Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou China
| | - Si‐Yu Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou China
| | - Jing‐Wen Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou China
| | - Li‐Dan Ye
- College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Yue Cheng
- Zhejiang Lvchuang Biotechnology Co., Ltd., Deqing County Huzhou China
| | - Xiao‐He Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou China
| |
Collapse
|
13
|
Arisetti N, Fuchs HLS, Coetzee J, Orozco M, Ruppelt D, Bauer A, Heimann D, Kuhnert E, Bhamidimarri SP, Bafna JA, Hinkelmann B, Eckel K, Sieber SA, Müller PP, Herrmann J, Müller R, Winterhalter M, Steinem C, Brönstrup M. Total synthesis and mechanism of action of the antibiotic armeniaspirol A. Chem Sci 2021; 12:16023-16034. [PMID: 35024125 PMCID: PMC8672772 DOI: 10.1039/d1sc04290d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols.
Collapse
Affiliation(s)
- Nanaji Arisetti
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
| | - Hazel L S Fuchs
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Janetta Coetzee
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Manuel Orozco
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Dominik Ruppelt
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry Tammannstraße 2 37077 Göttingen Germany
| | - Armin Bauer
- Sanofi R&D Industriepark Höchst 65926 Frankfurt Germany
| | - Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Eric Kuhnert
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | | | - Jayesh A Bafna
- Jacobs University Bremen Campus Ring 1 28759 Bremen Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Konstantin Eckel
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München Ernst-Otto-Fischer-Straße 8 85748 Garching Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Peter P Müller
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Jennifer Herrmann
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research Saarland University Campus E8.1 66123 Saarbrücken Germany
| | | | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry Tammannstraße 2 37077 Göttingen Germany
- Max-Planck-Institute for Dynamics and Self Organization Am Faßberg 17 37077 Göttingen Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstrasse 7 38124 Braunschweig Germany
- German Centre for Infection Research Partner Site Hannover-Braunschweig Germany
- Center for Biomolecular Drug Research (BMWZ), Leibniz Universität 30159 Hannover Germany
| |
Collapse
|
14
|
Kuncharoen N, Yuki M, Kudo T, Okuma M, Booncharoen A, Mhuantong W, Tanasupawat S. Comparative genomics and proposal of Streptomyces radicis sp. nov., an endophytic actinomycete from roots of plants in Thailand. Microbiol Res 2021; 254:126889. [PMID: 34689101 DOI: 10.1016/j.micres.2021.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Strains DS1-2T and AZ1-7, which were isolated from roots of plants, were taxonomically characterized based on polyphasic taxonomic and taxogenomic approaches. Both strains were Gram-stain-positive and filamentous bacteria which contained LL-diaminopimelic acid in cell-wall peptidoglycan and glucose and ribose in whole-cell hydrolysates. MK-9(H6), MK-10(H6), MK-9(H8), MK-10(H8) and MK-10(H4) were major menaquinones; iso-C16:0 and iso-C16:1G were predominant cellular fatty acids; diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol mannoside presented as major phospholipids; and the DNA G+C contents of 73.2 mol%. Strains DS1-2T and AZ1-7 showed 97.6-98.0 % 16S rRNA gene sequence similarity, 81.0-82.0 % ANIb, 84.8-85.3 % ANIm and 22.0-23.1 % digital DDH to their related type strains: S. specialis GW41-1564T and S. hoynatensis S1412T. Comparative genomics results of these strains and their related type strains also revealed the differences and distributions of key genes associated with stress responses, environmental variables, plant interactions and bioactive metabolites. Based on the phenotypic, chemotaxonomic and genomic data, strains DS1-2T and AZ1-7 could be assigned to the novel species within the genus Streptomyces for which the name Streptomyces radicis sp. nov. is proposed. The type strain is DS1-2T (=JCM 32152T =KCTC 39738T =TISTR 2403T).
Collapse
Affiliation(s)
- Nattakorn Kuncharoen
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Masahiro Yuki
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Takuji Kudo
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Moriya Okuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Auttaporn Booncharoen
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Research Team, Biorefinery and Bioproducts Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Zhang J, Zheng M, Yan J, Deng Z, Zhu D, Qu X. A Permissive Medium Chain Acyl-CoA Carboxylase Enables the Efficient Biosynthesis of Extender Units for Engineering Polyketide Carbon Scaffolds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceuticeal Sciences, Wuhan University, 185 Donghu Rd., Wuhan 430071, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Salnikova TV, Sabitov AA, Dmitriev MV, Maslivets AN, Rubin M. Substrate-dependent regiodivergent three-component condensation of 1H-pyrrole-2,3-diones, malononitrile and 4-hydroxyquinolin-2(1H)-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Jia J, Zhang C, Liu Y, Huang Y, Bai Y, Hang X, Zeng L, Zhu D, Bi H. Armeniaspirol A: a novel anti-Helicobacter pylori agent. Microb Biotechnol 2021; 15:442-454. [PMID: 33780131 PMCID: PMC8867979 DOI: 10.1111/1751-7915.13807] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance in Helicobacter pylori has been growing worldwide with current treatment regimens. Development of new compounds for treatment of H. pylori infections is urgently required to achieve a successful eradication therapy in the future. Armeniaspirols, a novel class of natural products isolated from Streptomyces armeniacus, have been previously identified as antibacterial agents against Gram‐positive pathogens. In this study, we found that armeniaspirol A (ARM1) exhibited potent antibacterial activity against H. pylori, including multidrug‐resistant strains, with MIC range values of 4–16 μg ml‐1. The underlying mechanism of action of ARM1 against H. pylori involved the disruption of bacterial cell membranes. Also, ARM1 inhibited biofilm formation, eliminated preformed biofilms and killed biofilm‐encased H. pylori in a dose‐dependent manner. In a mouse model of multidrug‐resistant H. pylori infection, dual therapy with ARM1 and omeprazole showed efficient in vivo killing efficacy comparable to the standard triple therapy, and induced negligible toxicity against normal tissues. Moreover, at acidic pH 2.5, ARM1 exhibited a much more potent anti‐H. pylori activity than metronidazole. Thus, these findings demonstrated that ARM1 is a novel potent anti‐H. pylori agent, which can be developed as a promising drug lead for treatment of H. pylori infections.
Collapse
Affiliation(s)
- Jia Jia
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chongwen Zhang
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yaqi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yanqiang Huang
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yuefan Bai
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xudong Hang
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liping Zeng
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Hongkai Bi
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
18
|
Purdy TN, Kim MC, Cullum R, Fenical W, Moore BS. Discovery and Biosynthesis of Tetrachlorizine Reveals Enzymatic Benzylic Dehydrogenation via an ortho-Quinone Methide. J Am Chem Soc 2021; 143:3682-3686. [PMID: 33656337 DOI: 10.1021/jacs.0c12415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ortho-quinone methides (o-QMs) are reactive intermediates in biosynthesis that give rise to a variety of intra- and intermolecular cyclization/addition products in bacteria, fungi, and plants. Herein, we report a new metabolic deviation of an o-QM intermediate in a benzylic dehydrogenation reaction that links the newly described marine bacterial natural products dihydrotetrachlorizine and tetrachlorizine. We discovered these novel dichloropyrrole-containing compounds from actinomycete strain AJS-327 that unexpectedly harbors in its genome a biosynthetic gene cluster (BGC) of striking similarity to that of chlorizidine, another marine alkaloid bearing a different carbon skeleton. Heterologous expression of the homologous flavin-dependent oxidoreductase enzymes Tcz9 and Clz9 revealed their native functions in tetrachlorizine and chlorizidine biosynthesis, respectively, supporting divergent oxidative dehydrogenation and pyrrolizine-forming reactions. Swapping these berberine bridge enzyme-like oxidoreductases, we produced cyclized and dehydrogenated analogs of tetrachlorizine and chlorizidine, including a dearomatized chlorizidine analog that stabilizes an o-QM via conjugation with a 3H-pyrrolizine ring.
Collapse
|
19
|
Zhou K, Huang J, Wu J, Qiu G. An unexpected iron(II)-promoted reaction of N-arylprop-2-yn-1-imines with water: Facile assembly of multi-substituted pyrroles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Dai J, Han R, Xu Y, Li N, Wang J, Dan W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg Chem 2020; 101:103922. [PMID: 32559577 DOI: 10.1016/j.bioorg.2020.103922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
The discovery of novel antibacterial molecules plays a key role in solving the current antibiotic crisis issue. Natural products have long been an important source of drug discovery. Herein, we reviewed 256 natural products from 11 structural classes in the period of 2016-01/2020, which were selected by SciFinder with new compounds or new structures and MICs lower than 10 μg/mL or 10 μM as criterions. This review will provide some effective antibacterial lead compounds for medicinal chemists, which will promote the antibiotics research based on natural products to the next level.
Collapse
Affiliation(s)
- Jiangkun Dai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China(1); State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China(1); School of Life Science and Technology, Weifang Medical University, Shandong, China(1).
| | - Rui Han
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1)
| | - Yujie Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1)
| | - Na Li
- College of Food Science and Technology, Northwest University, Xi'an, China(1).
| | - Junru Wang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi, China(1); College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1).
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China(1); College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China(1).
| |
Collapse
|
21
|
Halogenating Enzymes for Active Agent Synthesis: First Steps Are Done and Many Have to Follow. Molecules 2019; 24:molecules24214008. [PMID: 31694313 PMCID: PMC6864650 DOI: 10.3390/molecules24214008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Halogens can be very important for active agents as vital parts of their binding mode, on the one hand, but are on the other hand instrumental in the synthesis of most active agents. However, the primary halogenating compound is molecular chlorine which has two major drawbacks, high energy consumption and hazardous handling. Nature bypassed molecular halogens and evolved at least six halogenating enzymes: Three kind of haloperoxidases, flavin-dependent halogenases as well as α-ketoglutarate and S-adenosylmethionine (SAM)-dependent halogenases. This review shows what is known today on these enzymes in terms of biocatalytic usage. The reader may understand this review as a plea for the usage of halogenating enzymes for fine chemical syntheses, but there are many steps to take until halogenating enzymes are reliable, flexible, and sustainable catalysts for halogenation.
Collapse
|