1
|
Heise NV, Meyer SJ, Csuk R, Mueller T. Dehydroabietylamine-substituted trifluorobenzene sulfonamide rhodamine B hybrids as anticancer agents overcoming drug resistance. Eur J Med Chem 2024; 276:116667. [PMID: 38996651 DOI: 10.1016/j.ejmech.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Attachment of a conjugate assembled from a novel fluorinated carbonic anhydrase inhibitor and rhodamine B onto dehydroabietylamine (DHA) or cyclododecylamine led to first-in-class conjugates of good cytotoxicity; thereby IC50 values (from SRB assays; employed tumor cell lines A2780, A2780Cis, A549, HT29, MCF7, and non-malignant human fibroblasts CCD18Co) between 0.2 and 0.7 μM were found. Both conjugates showed similar cytotoxic activity but the dehydroabietylamine derived conjugate outperformed its cyclododecyl analog in terms of tumor cell/non-tumor cell selectivity. Both conjugates accumulate intracellular, and the DHA conjugate was able to overcome drug resistance which is effective independent of the expression status of carbonic anhydrase IX.
Collapse
Affiliation(s)
- Niels V Heise
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Sven J Meyer
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
| | - Thomas Mueller
- University Clinic for Internal Medicine IV, Hematology/Oncology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, D-06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Lapoot L, Jabeen S, O’Connor RM, Korytowski W, Girotti A, Greer A. Photosensitized Oxidative Damage from a New Perspective: The Influence of Before-Light and After-Light Reaction Conditions. J Org Chem 2024; 89:12873-12885. [PMID: 39231123 PMCID: PMC11421024 DOI: 10.1021/acs.joc.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Photooxidative damage is heavily influenced by the presence of bioactive agents. Conversely, bioactive agents influence the local environment, which in turn is perturbed by photooxidative damage. These sorts of processes give rise to a version of the "chicken-and-egg" quandary. In this Perspective, we probe this issue by referring to photooxidative damage in one direction as the light-dark (L-D) sequence and in a second direction as the dark-light (D-L) sequence with a reversed cause and effect. The L-D sequence can lead to the downstream production of reactive molecular species (RMS) in the dark, whereas the D-L sequence can be a pre-irradiation period, such as an additive to limit cellular iron levels to enhance biosynthesized amounts of a protoporphyrin sensitizer. A third direction comes from L-D or D-L sequences, or both simultaneously, which can also be useful for optimizing photodynamics. Photodynamic optimization will benefit from understanding and quantitating unidirectional L-D and D-L pathways, and bidirectional L-D/D-L pathways, for improved control over photooxidative damage. Photooxidative damage, which occurs during anticancer photodynamic therapy (PDT), will be shown to involve RMS. Such RMS include persulfoxides (R2S+OO-), NO2•, peroxynitrate (O2NOO-), OOSCN-, SO3•-, selenocyanogen [(SeCN)2], the triselenocyanate anion [(SeCN)3-], I•, I2•-, I3-, and HOOI, as well as additives to destabilize membranes (e.g., caspofungin and saponin A16), inhibit DNA synthesis (5-fluorouracil), or sequester iron (desferrioxamine). In view of the success that additive natural products and repurposed drugs have had in PDT, a Perspective of additive types is expected to reveal mechanistic details for enhanced photooxidation reactions in general. Indeed, strategies for how to potentiate photooxidations with additives remain highly underexplored.
Collapse
Affiliation(s)
- Lloyd Lapoot
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ryan M. O’Connor
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
| | - Witold Korytowski
- Department
of Biophysics, Jagiellonian University, Gołębia 24 Street, 31-007 Kraków, Poland
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Albert Girotti
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College of the City
University of New York, Brooklyn, New York 11210, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
3
|
Zhang SG, Wan YQ, Zhang WH. Discovery of Dehydroabietylamine Derivatives as Antibacterial and Antifungal Agents. JOURNAL OF NATURAL PRODUCTS 2024; 87:924-934. [PMID: 38513270 DOI: 10.1021/acs.jnatprod.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A diverse array of biologically active derivatives was derived by modifying the chemically active sites of dehydroabietylamine. Herein, we describe the synthesis of a new series of C-19-arylated dehydroabietylamine derivatives using a palladium-catalyzed C(sp3)-H activation reaction. Five analogues (3b, 3d, 3h, 3n, and 4a) exhibited antibacterial activity against Escherichia coli. Compound 4a exhibited strong inhibitory activity against DNA Topo II and Topo IV. Molecular docking modeling indicated that it can bind effectively to the target through interactions with amino acid residues. The synthesized compounds were tested in vitro for their antifungal activity against six common phytopathogenic fungi. The mechanism of action of compound 4c against Rhizoctorzia solani was investigated, revealing that it disrupts the morphology of the mycelium and enhances cell membrane permeability.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu-Qiang Wan
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
4
|
Okhina AA, Rogachev AD, Kovaleva KS, Yarovaya OI, Khotskina AS, Zavyalov EL, Vatsadze SZ, Pokrovsky AG, Salakhutdinov NF. Development of an LC-MS/MS-based method for quantification and pharmacokinetics study on SCID mice of a dehydroabietylamine-adamantylamine conjugate, a promising inhibitor of the DNA repair enzyme. J Pharm Biomed Anal 2023; 234:115507. [PMID: 37331915 DOI: 10.1016/j.jpba.2023.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/10/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Earlier, it was found that the agent KS-389, a conjugate of dehydroabietylamine and 1-aminoadamantane, possess inhibiting activity with regard to Tdp1. It this study, LC-MS/MS-based methods of quantification of KS-389 in mice blood and several organs (brain, liver and kidney) were developed and validated. Validation of the methods was performed according to the guidelines of U.S. Food and Drug Administration and European Medicines Agency in terms of selectivity, linearity, accuracy, precision, recovery, matrix effect, stability and carry-over. Dried blood spots (DBS) method was used for blood sample preparation. HPLC separation was performed on a reversed-phase column; the total analysis time was 12 min. Mass spectral detection was performed on a 6500 QTRAP mass spectrometer in multiple reaction monitoring mode. Transitions 463.5→135.1/107.2 and 336.2→332.2/176.2 were scanned for KS-389 and 2,5-bis(4-diethylaminophenyl)-1,3,4-oxadiazole used as the internal standard, respectively. Pharmacokinetics of the compound as well as its distribution in the organs were studied on SCID mice after intraperitoneal administration of the substance at a dose of 5 mg/kg, and it was found that its maximum concentration in blood is reached in 1-1.5 h and was 80 ng/mL. The maximum concentration in all organs is reached after the same time and is approximately 1500 ng/g and 1100 ng/g in liver and kidney, respectively. This is the first report on the pharmacokinetics of Tdp1 inhibitor based on dehydroabietylamine and 1-aminoadamantane after a single administration to mice. Also, the substance was found to be able to penetrate the blood-brain barrier which is important for, and its maximum concentration was c.a. 25-30 ng/g. These results are important for glioma treatment and make it promising for this purpose.
Collapse
Affiliation(s)
- Alina A Okhina
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, Novosibirsk 630090, Russia; Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str., 2, Novosibirsk 630090, Russia
| | - Artem D Rogachev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, Novosibirsk 630090, Russia; Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str., 2, Novosibirsk 630090, Russia.
| | - Kseniya S Kovaleva
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, Novosibirsk 630090, Russia
| | - Olga I Yarovaya
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, Novosibirsk 630090, Russia; Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str., 2, Novosibirsk 630090, Russia
| | - Anna S Khotskina
- Institute of Cytology and Genetics, Acad. Lavrentiev Ave., 10, Novosibirsk 630090, Russia
| | - Evgeniy L Zavyalov
- Institute of Cytology and Genetics, Acad. Lavrentiev Ave., 10, Novosibirsk 630090, Russia
| | - Sergey Z Vatsadze
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninski pr., 47, 119991 Moscow, Russia
| | - Andrey G Pokrovsky
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str., 2, Novosibirsk 630090, Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, Novosibirsk 630090, Russia; Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str., 2, Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Zakharenko AL, Luzina OA, Chepanova AA, Dyrkheeva NS, Salakhutdinov NF, Lavrik OI. Natural Products and Their Derivatives as Inhibitors of the DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1. Int J Mol Sci 2023; 24:5781. [PMID: 36982848 PMCID: PMC10051138 DOI: 10.3390/ijms24065781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Pyranodipyran Derivatives with Tyrosyl DNA Phosphodiesterase 1 Inhibitory Activities and Fluorescent Properties from Aspergillus sp. EGF 15-0-3. Mar Drugs 2022; 20:md20030211. [PMID: 35323510 PMCID: PMC8954640 DOI: 10.3390/md20030211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/02/2022] Open
Abstract
Four new benzodipyran racemates, namely (±)-aspergiletals A–D (3–6), representing a rare pyrano[4,3-h]chromene scaffold were isolated together with eurotiumide G (1) and eurotiumide F (2) from the soft-coral-derived fungus Aspergillus sp. EGF 15-0-3. All the corresponding optically pure enantiomers were successfully separated by a chiral HPLC column. The structures and configurations of all the compounds were elucidated based on the combination of NMR and HRESIMS data, chiral separation, single-crystal X-ray diffraction, quantum chemical 13C NMR, and electronic circular dichroism calculations. Meanwhile, the structure of eurotiumide G was also revised. The TDP1 inhibitor activities and photophysical properties of the obtained compounds were evaluated. In the TDP1 inhibition assay, as a result of synergy between (+)-6 and (−)-6, (±)-6 displayed strong inhibitory activity to TDP1 with IC50 values of 6.50 ± 0.73 μM. All compounds had a large Stokes shift and could be utilized for elucidating the mode of bioactivities by fluorescence imaging.
Collapse
|
7
|
Kovaleva K, Mamontova E, Yarovaya O, Zakharova O, Zakharenko A, Lavrik O, Salakhutdinov N. Dehydroabietylamine-based thiazolidin-4-ones and 2-thioxoimidazolidin-4-ones as novel tyrosyl-DNA phosphodiesterase 1 inhibitors. Mol Divers 2021; 25:2389-2397. [PMID: 32833106 DOI: 10.1007/s11030-020-10132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a DNA repair enzyme that plays a key role in repairing damage caused by various antitumor drugs. It is a promising target in medicinal chemistry for the creation of cancer adjuvant therapy. Inhibition of this enzyme together with the use of anticancer chemotherapy enhances the effect of the latter. The natural mutant of TDP1, TDP1(H493R), causes severe neurodegenerative disease spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1). Inhibition of TDP1(H493R) appears to be useful in containment the progression of the disease. A library of compounds was synthesized starting from dehydroabietylamine including heterocyclic pharmacophore groups in the core. To obtain the desired products, the starting dehydroabietylamine was introduced sequentially in reaction with isothiocyanate and ethyl bromoacetate. Different classes of heterocyclic derivatives-2-iminothiazolidin-4-ons and 2-thioxoimidazolidin-4-ones-were obtained depending on the addition order of reagents. 2-Iminothiazolidin-4-thiones were obtained from 2-iminothiazolidin-4-ones under the action of the Lawesson's reagent. Effective TDP1 inhibitors were found among the obtained compounds that work in submicromolar concentrations. The inhibitor of TDP1(H493R) was also detected.
Collapse
Affiliation(s)
- Kseniya Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090.
- Novosibirsk State University, Novosibirsk, Russian Federation, 630090.
| | - Evgeniya Mamontova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090
| | - Olga Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| | - Olga Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090
| | - Alexandra Zakharenko
- Novosibirsk State University, Novosibirsk, Russian Federation, 630090
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090
| | - Olga Lavrik
- Novosibirsk State University, Novosibirsk, Russian Federation, 630090
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090
| | - Nariman Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
8
|
Nikolin VP, Popova NA, Kaledin VI, Luzina OA, Zakharenko AL, Salakhutdinov NF, Lavrik OI. The influence of an enamine usnic acid derivative (a tyrosyl-DNA phosphodiesterase 1 inhibitor) on the therapeutic effect of topotecan against transplanted tumors in vivo. Clin Exp Metastasis 2021; 38:431-440. [PMID: 34370156 DOI: 10.1007/s10585-021-10113-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a repair enzyme for 3'-end DNA lesions, predominantly stalled DNA-topoisomerase 1 (Top1) cleavage complexes. Tdp1 is a promising target for anticancer therapy based on DNA damage caused by Top1 poisoning. Earlier, we have reported about usnic acid enamine derivatives that are Tdp1 inhibitors sensitizing tumor cells to the action of Top1 poison (Zakharenko in J Nat Prod 79:2961-2967, 2016). In the present work, we showed a sensitizing effect of an enamine derivative of usnic acid (when administered intragastrically) on Lewis lung carcinoma in mice in combination with topotecan (TPT, Top1 poison used in the clinic). In the presence of the usnic acid derivative, both the volume of the primary tumor and the number of metastases significantly diminished. The absence of acute toxicity of this compound was demonstrated, as was the importance of the method of its administration for the manifestation of the sensitizing properties.
Collapse
Affiliation(s)
- V P Nikolin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
| | - N A Popova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, 1 Pirogova Str., Novosibirsk, Russian Federation, 630090
| | - V I Kaledin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
| | - O A Luzina
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
| | - A L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
| | - N F Salakhutdinov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, 1 Pirogova Str., Novosibirsk, Russian Federation, 630090
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090.
- Novosibirsk State University, 1 Pirogova Str., Novosibirsk, Russian Federation, 630090.
- Altai State University, 61 Lenina Ave., Barnaul, Russian Federation, 656049.
| |
Collapse
|
9
|
A Dual-Sensor-Based Screening System for In Vitro Selection of TDP1 Inhibitors. SENSORS 2021; 21:s21144832. [PMID: 34300575 PMCID: PMC8309759 DOI: 10.3390/s21144832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
DNA sensors can be used as robust tools for high-throughput drug screening of small molecules with the potential to inhibit specific enzymes. As enzymes work in complex biological pathways, it is important to screen for both desired and undesired inhibitory effects. We here report a screening system utilizing specific sensors for tyrosyl-DNA phosphodiesterase 1 (TDP1) and topoisomerase 1 (TOP1) activity to screen in vitro for drugs inhibiting TDP1 without affecting TOP1. As the main function of TDP1 is repair of TOP1 cleavage-induced DNA damage, inhibition of TOP1 cleavage could thus reduce the biological effect of the TDP1 drugs. We identified three new drug candidates of the 1,5-naphthyridine and 1,2,3,4-tetrahydroquinolinylphosphine sulfide families. All three TDP1 inhibitors had no effect on TOP1 activity and acted synergistically with the TOP1 poison SN-38 to increase the amount of TOP1 cleavage-induced DNA damage. Further, they promoted cell death even with low dose SN-38, thereby establishing two new classes of TDP1 inhibitors with clinical potential. Thus, we here report a dual-sensor screening approach for in vitro selection of TDP1 drugs and three new TDP1 drug candidates that act synergistically with TOP1 poisons.
Collapse
|
10
|
Tret’yakova EV. Synthesis and Modification of Isothiocyanate Derivatives of Maleopimaric and Dihydroquinopimaric Acids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Novel Tdp1 Inhibitors Based on Adamantane Connected with Monoterpene Moieties via Heterocyclic Fragments. Molecules 2021; 26:molecules26113128. [PMID: 34073771 PMCID: PMC8197275 DOI: 10.3390/molecules26113128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 01/23/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a promising target for anticancer therapy due to its ability to counter the effects topoisomerase 1 (Top1) poison, such as topotecan, thus, decreasing their efficacy. Compounds containing adamantane and monoterpenoid residues connected via 1,2,4-triazole or 1,3,4-thiadiazole linkers were synthesized and tested against Tdp1. All the derivatives exhibited inhibition at low micromolar or nanomolar concentrations with the most potent inhibitors having IC50 values in the 0.35–0.57 µM range. The cytotoxicity was determined in the HeLa, HCT-116 and SW837 cancer cell lines; moderate CC50 (µM) values were seen from the mid-teens to no effect at 100 µM. Furthermore, citral derivative 20c, α-pinene-derived compounds 20f, 20g and 25c, and the citronellic acid derivative 25b were found to have a sensitizing effect in conjunction with topotecan in the HeLa cervical cancer and colon adenocarcinoma HCT-116 cell lines. The ligands are predicted to bind in the catalytic pocket of Tdp1 and have favorable physicochemical properties for further development as a potential adjunct therapy with Top1 poisons.
Collapse
|
12
|
Hu DX, Tang WL, Zhang Y, Yang H, Wang W, Agama K, Pommier Y, An LK. Synthesis of Methoxy-, Methylenedioxy-, Hydroxy-, and Halo-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors and Their Biological Activity for Drug-Resistant Cancer. J Med Chem 2021; 64:7617-7629. [PMID: 34008967 PMCID: PMC10087287 DOI: 10.1021/acs.jmedchem.1c00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a recently discovered DNA repair enzyme, tyrosyl-DNA phosphodiesterase 1 (TDP1) removes topoisomerase IB (TOP1)-mediated DNA protein cross-links. Inhibiting TDP1 can potentiate the cytotoxicity of TOP1 inhibitors and overcome cancer cell resistance to TOP1 inhibitors. On the basis of our previous study, herein we report the synthesis of benzophenanthridinone derivatives as TOP1 and TDP1 inhibitors. Seven compounds (C2, C4, C5, C7, C8, C12, and C14) showed a robust TOP1 inhibitory activity (+++ or ++++), and four compounds (A13, C12, C13, and C26) showed a TDP1 inhibition (half-maximal inhibitory concentration values of 15 or 19 μM). We also show that the dual TOP1 and TDP1 inhibitor C12 induces both cellular TOP1cc, TDP1cc formation and DNA damage, resulting in cancer cell apoptosis at a sub-micromolar concentration. In addition, C12 showed an enhanced activity in drug-resistant MCF-7/TDP1 cancer cells and was synergistic with topotecan in both MCF-7 and MCF-7/TDP1 cells.
Collapse
Affiliation(s)
- De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Lin Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda 20892, Maryland, United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda 20892, Maryland, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda 20892, Maryland, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China
| |
Collapse
|
13
|
Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals (Basel) 2021; 14:ph14050422. [PMID: 34062881 PMCID: PMC8147275 DOI: 10.3390/ph14050422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
In this paper, a series of novel abietyl and dehydroabietyl ureas, thioureas, amides, and thioamides bearing adamantane moieties were designed, synthesized, and evaluated for their inhibitory activities against tyrosil-DNA-phosphodiesterase 1 (TDP1). The synthesized compounds were able to inhibit TDP1 at micromolar concentrations (0.19–2.3 µM) and demonstrated low cytotoxicity in the T98G glioma cell line. The effect of the terpene fragment, the linker structure, and the adamantane residue on the biological properties of the new compounds was investigated. Based on molecular docking results, we suppose that adamantane derivatives of resin acids bind to the TDP1 covalent intermediate, forming a hydrogen bond with Ser463 and hydrophobic contacts with the Phe259 and Trp590 residues and the oligonucleotide fragment of the substrate.
Collapse
|
14
|
Xiao LG, Zhang Y, Zhang HL, Li D, Gu Q, Tang GH, Yu Q, An LK. Spiroconyone A, a new phytosterol with a spiro [5,6] ring system from Conyza japonica. Org Biomol Chem 2020; 18:5130-5136. [PMID: 32379263 DOI: 10.1039/d0ob00666a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spiroconyone A (1), the first rearranged phytosterol featuring an unusual spiro [5,6] ring system, and nine known compounds (2-10) were isolated from the aerial parts of Conyza japonica. The structure of 1 was elucidated through spectroscopic methods, and its absolute configuration was determined by single-crystal X-ray diffraction analysis. Enzyme-based assay revealed that spiroconyone A showed weak TDP1 inhibition and compounds 7 and 10 showed TDP1 inhibition with IC50 values of 36 μM and 16 μM, respectively. MTT assay indicated that 7 and 10 showed a strong synergistic effect with the clinical TOP1 inhibitor topotecan in MCF-7 cells. Compound 5 displayed the most potent cytotoxicity against MCF-7 cells with a GI50 value of 3.3 μM. Furthermore, a hypothetical biosynthetic pathway for 1 was proposed. This work provides valuable information that the secondary metabolites from Conyza japonica could be developed as anticancer agents.
Collapse
Affiliation(s)
- Long-Gao Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Hong-Li Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Qiong Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Qian Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China. and Clinical Pharmacy (School of Integrative Pharmacy, Institute of Integrative Pharmaceutical Research), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China. and Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, China
| |
Collapse
|
15
|
Li J, Liu C. Synthesis, antitumor and DNA cleavage activities of a novel class of dehydroabietylamine derivatives. Heliyon 2020; 6:e03390. [PMID: 32099921 PMCID: PMC7031308 DOI: 10.1016/j.heliyon.2020.e03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/22/2019] [Accepted: 02/05/2020] [Indexed: 11/06/2022] Open
Abstract
Previous studies have reported higher biological activity of dehydrorosinamine derivatives. In order to further synthesize novel compounds with higher biological activity, a series of novel compounds containing benzo-azepine structures were synthesized from dehydroabietylamine in good yields in this study. The structures of synthesized compounds were identified by infra red (IR), 1H-NMR, 13C-NMR, and mass spectra (MS) analysis. The antitumor activities of the target compounds against L02 and HepG2 cells were studied. Furthermore, the dehydroabietylamine derivatives were studied on plasmid DNA cleavage activities. The results showed that the synthesized target compound exhibit antitumor and DNA cleavage activities against plasmid DNA (Escherichia coli). Our results further demonstrate the relationship between the chemical structure and biological function of the synthesized compounds.
Collapse
Affiliation(s)
- Jincai Li
- Department of Pharmacy, Bozhou Vocational and Technical College, Bozhou 236800, PR China
| | - Chaoxiang Liu
- Department of Pharmacy, Bozhou Vocational and Technical College, Bozhou 236800, PR China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
16
|
Khomenko TM, Zakharenko AL, Chepanova AA, Ilina ES, Zakharova OD, Kaledin VI, Nikolin VP, Popova NA, Korchagina DV, Reynisson J, Chand R, Ayine-Tora DM, Patel J, Leung IKH, Volcho KP, Salakhutdinov NF, Lavrik OI. Promising New Inhibitors of Tyrosyl-DNA Phosphodiesterase I (Tdp 1) Combining 4-Arylcoumarin and Monoterpenoid Moieties as Components of Complex Antitumor Therapy. Int J Mol Sci 2019; 21:ijms21010126. [PMID: 31878088 PMCID: PMC6982354 DOI: 10.3390/ijms21010126] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme in humans, and a current and promising inhibition target for the development of new chemosensitizing agents due to its ability to remove DNA damage caused by topoisomerase 1 (Top1) poisons such as topotecan and irinotecan. Herein, we report our work on the synthesis and characterization of new Tdp1 inhibitors that combine the arylcoumarin (neoflavonoid) and monoterpenoid moieties. Our results showed that they are potent Tdp1 inhibitors with IC50 values in the submicromolar range. In vivo experiments with mice revealed that compound 3ba (IC50 0.62 µM) induced a significant increase in the antitumor effect of topotecan on the Krebs-2 ascites tumor model. Our results further strengthen the argument that Tdp1 is a druggable target with the potential to be developed into a clinically-potent adjunct therapy in conjunction with Top1 poisons.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Ekaterina S. Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Olga D. Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Vasily I. Kaledin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Nelly A. Popova
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Dina V. Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK;
| | - Raina Chand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Daniel M. Ayine-Tora
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Correspondence:
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Department of Physical and Chemical Biology and Biotechnology, Altai State University, 61, Lenina Ave., 656049 Barnaul, Russia
| |
Collapse
|