1
|
Lacson MLB, Arbotante CA, Magdayao MJTE, Bundalian RD, Anas ARJ. Ultra-high-performance liquid chromatography-tandem high-resolution elevated mass spectrometry profiling of anti-methicillin-resistant Staphylococcus aureus metabolites from the endophytic bacteria collected from the weeds of a previous dumpsite. J Chromatogr A 2023; 1706:464228. [PMID: 37556933 DOI: 10.1016/j.chroma.2023.464228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023]
Abstract
The culturable endophytic bacteria from the weeds Cleome rutidosperma of the family Cleomaceae and Digitaria sanguinalis of the family Poaceae obtained from a previous dumpsite in Pampanga, Philippines have been assessed for their anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and the analytes with such activity should be identified. However, due to the limited amounts collected from the isolation process, 1.8 mg yield of compound 1 from the endophyte of C. rutidosperma and 1.2 mg of a mixture from the endophyte of D. sanguinalis were selected for LC-MSE analysis. The production of compounds from the culturable endophytic bacteria Pseudomonas aeruginosa- determined by gene-sequencing, an untargeted and data-independent analysis (DIA) by ultra-high performance liquid chromatography-high resolution-elevated energy mass spectrometry (UHPLC-HR-MSE) technique was employed to profile the metabolites present in the two high-performance liquid chromatography (HPLC) fractions. The analytes present from P. aeruginosa detected by UHPLC-HR-MSE isolated from C. rutidosperma was phenazine-1-carboxylic acid (1), and for D. sanguinalis were chamigrenal (2), dialkyl resorcinol (3), and a pyoverdine elicitor (4). This study proves that UHPLC-HR-MSE could identify the anti-MRSA constituents in P. aeruginosa from commensal weeds C. rutidosperma and D. sanguinalis. The UHPLC-HR-MSE could help strengthen metabolomics antibacterial research and its related applications from a future perspective. Application of metabolomics research using UHPLC-HR-MSE could enhance the rehabilitation of dumpsites by the microbial community present.
Collapse
Affiliation(s)
- Mona Lisa B Lacson
- Center for Advanced Research and Innovation, Office of the Vice President for Research and Innovation, Angeles University Foundation, Pampanga 2009 Philippines; College of Allied Medical Professions, Angeles University Foundation, Pampanga 2009 Philippines.
| | - Carolyn A Arbotante
- College of Arts and Sciences, Angeles University Foundation, Pampanga 2009 Philippines
| | - Ma Jamaica Trexy E Magdayao
- Applied Chemistry Laboratory Regional Research Center, University of the Philippines Visayas, Miag-ao, Iloilo 5023 Philippines
| | - Reynaldo Dl Bundalian
- Center for Advanced Research and Innovation, Office of the Vice President for Research and Innovation, Angeles University Foundation, Pampanga 2009 Philippines.
| | - Andrea Roxanne J Anas
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Chikusa-Ku, Nagoya 464-8601, Japan; Department of Molecular Pharmacokinetics, Division of Clinical Pharmacology, Graduate School of Medicine Nagoya University, Chikusa-Ku, Nagoya 464-8601, Japan.
| |
Collapse
|
2
|
Antibacterial natural products from microbial and fungal sources: a decade of advances. Mol Divers 2023; 27:517-541. [PMID: 35301633 DOI: 10.1007/s11030-022-10417-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
Throughout the ages the world has witnessed the outbreak of many infectious diseases. Emerging microbial diseases pose a serious threat to public health. Increasing resistance of microorganisms towards the existing drugs makes them ineffective. In fact, anti-microbial resistance is declared as one of the top public health threats by WHO. Hence, there is an urge for the discovery of novel antimicrobial drugs to combat with this challenge. Structural diversity and unique pharmacological effects make natural products a prime source of novel drugs. Staggeringly, in spite of its extensive biodiversity, a prominent portion of microorganism species remains unexplored for the identification of bioactives. Microorganisms are a predominant source of new chemical entities and there are remarkable number of antimicrobial drugs developed from it. In this review, we discuss the contributions of microorganism based natural products as effective antibacterial agents, studied during the period of 2010-2020. The review encompasses over 140 structures which are either natural products or semi-synthetic derivatives of microbial natural products. 65 of them are identified as newly discovered natural products. All the compounds discussed herein, have exhibited promising efficacy against various bacterial strains.
Collapse
|
3
|
Shi Y, Wolf CA, Lotfy R, Sharma SS, Tesfa AF, Wolber G, Bureik M, Clark BR. Deciphering the biotransformation mechanism of dialkylresorcinols by CYP4F11. Bioorg Chem 2023; 131:106330. [PMID: 36565673 DOI: 10.1016/j.bioorg.2022.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Clemens A Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Rowaa Lotfy
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Abel Fekadu Tesfa
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China.
| |
Collapse
|
4
|
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. N-(2-hydroxyphenyl)-2-phenazinamine from Nocardiopsis exhalans induces p53-mediated intrinsic apoptosis signaling in lung cancer cell lines. Chem Biol Interact 2023; 369:110282. [PMID: 36427553 DOI: 10.1016/j.cbi.2022.110282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
The present study aims to investigate the effect and the molecular mechanism of N-(2-hydroxyphenyl)-2-phenazinamine (NHP) isolated from Nocardiopsis exhalans against the proliferation of human lung cancer cells. The cytotoxic activity of NHP against A549 and H520 cells was determined using MTT assay. The cytotoxic activity of NHP against A549 and H520 lung cancer cells showed excellent activity at 75 μg/mL and damage the mitochondrial membrane and nucleus by generating oxidative stress. NHP causes nuclear condensation and induces apoptosis which was confirmed using AO/EB and PI/DAPI dual staining assay. Moreover, the NHP downregulates the oncogenic genes such as IL-8, TNFα, MMPs and BcL2 and also upregulates the expression of apoptosis marker genes such as Cyto C, p53, p21, caspase 9/3 in A549 and H520 human lung cancer cells. Considering the strong anticancer activity of NHP against lung cancer, NHP may be further evaluated as a potential anticancer drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Centre for Natural Products and Traditional Knowledge, Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | | | | | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, India.
| |
Collapse
|
5
|
Lu Y, Liu X, Lotfy R, Liu S, Tesfa AF, Wolber G, Bureik M, Clark BR. Experimental and Computational Studies on the Biotransformation of Pseudopyronines with Human Cytochrome P450 CYP4F2. JOURNAL OF NATURAL PRODUCTS 2022; 85:2603-2609. [PMID: 36327116 DOI: 10.1021/acs.jnatprod.2c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The secondary metabolite pseudopyronine B, isolated from Pseudomonas mosselii P33, was biotransformed by human P450 enzymes, heterologously expressed in the fission yeast Schizosaccharomyces pombe. Small-scale studies confirmed that both CYP4F2 and CYP4F3A were capable of oxidizing the substrate, with the former achieving a higher yield. In larger-scale studies using CYP4F2, three new oxidation products were obtained, the structures of which were elucidated by UV-vis, 1D and 2D NMR, and HR-MS spectroscopy. These corresponded to hydroxylated, carboxylated, and ester derivatives (1-3) of pseudopyronine B, all of which had been oxidized exclusively at the ω-position of the C-6 alkyl chain. In silico homology modeling experiments highlighted key interactions between oxygen atoms of the pyrone ring and two serine residues and a histidine residue of CYP4F2, which hold the substrate in a suitable orientation for oxidation at the terminus of the C-6 alkyl chain. Additional modeling studies with all three pseudopyronines revealed that the seven-carbon alkyl chain of pseudopyronine B was the perfect length for oxidation, with the terminal carbon lying close to the heme iron. The antibacterial activity of the substrates and three oxidation products was also assessed, revealing that oxidation at the ω-position removes all antimicrobial activity. This study both increases the range of known substrates for human CYF4F2 and CYP4F3A enzymes and demonstrates their utility in producing additional natural product derivatives.
Collapse
Affiliation(s)
- Ya Lu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, People's Republic of China
| | - Rowaa Lotfy
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Sijie Liu
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Abel Fekadu Tesfa
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry (Computer-Aided Drug Design), Institute of Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300092, People's Republic of China
| |
Collapse
|
6
|
Liu X, Wang Y, Zaleta-Pinet DA, Borris RP, Clark BR. Antibacterial and Anti-Biofilm Activity of Pyrones from a Pseudomonas mosselii Strain. Antibiotics (Basel) 2022; 11:1655. [PMID: 36421300 PMCID: PMC9686599 DOI: 10.3390/antibiotics11111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 08/27/2023] Open
Abstract
The emergence of drug resistant microbes over recent decades represents one of the greatest threats to human health; the resilience of many of these organisms can be attributed to their ability to produce biofilms. Natural products have played a crucial role in drug discovery, with microbial natural products in particular proving a rich and diverse source of antimicrobial agents. During antimicrobial activity screening, the strain Pseudomonas mosselii P33 was found to inhibit the growth of multiple pathogens. Following chemical investigation of this strain, pseudopyronines A-C were isolated as the main active principles, with all three pseudopyronines showing outstanding activity against Staphylococcus aureus. The analogue pseudopyronine C, which has not been well-characterized previously, displayed sub-micromolar activity against S. aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. Moreover, the inhibitory abilities of the pseudopyronines against the biofilms of S. aureus were further studied. The results indicated all three pseudopyronines could directly reduce the growth of biofilm in both adhesion stage and maturation stage, displaying significant activity at micromolar concentrations.
Collapse
Affiliation(s)
- Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Yali Wang
- College of Pharmacy, North China University of Science and Technology, Tangshan 063000, China
| | - Diana A. Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Robert P. Borris
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Benjamin R. Clark
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Mou L, Du X, Lu X, Lu Y, Li G, Li J. Component analysis and antifungal activity of three Chinese herbal essential oils and their application of postharvest preservation of peach fruit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Li J, Shi Y, Clark BR. Semi-synthesis of antibacterial dialkylresorcinol derivatives. J Antibiot (Tokyo) 2020; 74:70-75. [DOI: 10.1038/s41429-020-0359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022]
|