1
|
Bidula S, Piyasirananda W, Bielecka H, Bibič L, Beekman A, Stokes L. Screening herbal and natural product libraries to aid discovery of novel allosteric modulators of human P2X7. Purinergic Signal 2024:10.1007/s11302-024-10055-6. [PMID: 39436616 DOI: 10.1007/s11302-024-10055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
P2X7 is an emerging therapeutic target for several disorders and diseases due to its role in inflammatory signalling. This study aimed to exploit the unique chemical libraries of plants used in traditional medicinal practices to discover novel allosteric modulators from natural sources. We identified several compounds from the NCI Natural Product library as P2X7 antagonists including confertifolin and digallic acid (IC50 values 3.86 µM and 4.05 µM). We also identified scopafungin as a novel positive allosteric modulator of hP2X7. Screening a traditional medicinal plant extract library revealed 39 plant species with inhibitory action at hP2X7 and 17 plant species with positive allosteric modulator activity. Using computational docking to filter identified components from these plant species and determine potential antagonists, we investigated nine purified chemicals including flavonoids quercetin, kaempferol, ECG, and EGCG. These were shown to inhibit ATP-induced YO-PRO-1 uptake into HEK-hP2X7 cells; however, we also showed that all four flavonoids demonstrated significant assay interference using a cell-free DNA YO-PRO-1 fluorescence test. One plant extract, Dioscorea nipponica, demonstrating positive modulator activity was investigated, and dioscin was identified as a glycoside with PAM activity in ATP-induced YO-PRO-1 uptake assay and whole-cell patch-clamp recordings. However, membrane permeabilisation was observed following application > 10 min limiting the use of dioscin as a pharmacological tool. This work describes a useful workflow with multiple assays for the identification of novel allosteric modulators for human P2X7.
Collapse
Affiliation(s)
- Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Waraporn Piyasirananda
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hanna Bielecka
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
2
|
Voldřich J, Matoušová M, Šmídková M, Mertlíková-Kaiserová H. Fluorescence-Based HTS Assays for Ion Channel Modulation in Drug Discovery Pipelines. ChemMedChem 2024:e202400383. [PMID: 39221492 DOI: 10.1002/cmdc.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Ion channels represent a druggable family of transmembrane pore-forming proteins with important (patho)physiological functions. While electrophysiological measurement (manual patch clamp) remains the only direct method for detection of ion currents, it is a labor-intensive technique. Although automated patch clamp instruments have become available to date, their high costs limit their use to large pharma companies or commercial screening facilities. Therefore, fluorescence-based assays are particularly important for initial screening of compound libraries. Despite their numerous disadvantages, they are highly amenable to high-throughput screening and in many cases, no sophisticated instrumentation or materials are required. These features predispose them for implementation in early phases of drug discovery pipelines (hit identification), even in an academic environment. This review summarizes the advantages and pitfalls of individual methodological approaches for identification of ion channel modulators employing fluorescent probes (i. e., membrane potential and ion flux assays) with emphasis on practical aspects of their adaptation to high-throughput format.
Collapse
Affiliation(s)
- Jan Voldřich
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
- University of Chemistry and Technology, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, Prague 6 - Dejvice, 16610, Czech Republic
| |
Collapse
|
3
|
Romano JD, Li H, Napolitano T, Realubit R, Karan C, Holford M, Tatonetti NP. Discovering Venom-Derived Drug Candidates Using Differential Gene Expression. Toxins (Basel) 2023; 15:451. [PMID: 37505720 PMCID: PMC10467105 DOI: 10.3390/toxins15070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Venoms are a diverse and complex group of natural toxins that have been adapted to treat many types of human disease, but rigorous computational approaches for discovering new therapeutic activities are scarce. We have designed and validated a new platform-named VenomSeq-to systematically identify putative associations between venoms and drugs/diseases via high-throughput transcriptomics and perturbational differential gene expression analysis. In this study, we describe the architecture of VenomSeq and its evaluation using the crude venoms from 25 diverse animal species and 9 purified teretoxin peptides. By integrating comparisons to public repositories of differential expression, associations between regulatory networks and disease, and existing knowledge of venom activity, we provide a number of new therapeutic hypotheses linking venoms to human diseases supported by multiple layers of preliminary evidence.
Collapse
Affiliation(s)
- Joseph D. Romano
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hai Li
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; (H.L.); (R.R.); (C.K.)
- Columbia Genome Center, Columbia University, New York, NY 10032, USA
| | - Tanya Napolitano
- Department of Chemistry, CUNY Hunter College, New York, NY 10032, USA (M.H.)
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Ronald Realubit
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; (H.L.); (R.R.); (C.K.)
- Columbia Genome Center, Columbia University, New York, NY 10032, USA
| | - Charles Karan
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; (H.L.); (R.R.); (C.K.)
- Columbia Genome Center, Columbia University, New York, NY 10032, USA
| | - Mandë Holford
- Department of Chemistry, CUNY Hunter College, New York, NY 10032, USA (M.H.)
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- The PhD Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
- The PhD Program in Biology, Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY 10032, USA
| | - Nicholas P. Tatonetti
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90069, USA
| |
Collapse
|
4
|
Park S, Choi EJ, Kim JY, Lee EJ, Bae YJ, Seong SH, Lee J, Oh SH. 7-desacetoxy-6,7-dehydrogedunin discovered by high-throughput screening system suppresses melanogenesis through ATP-P2X7 signaling inhibition. J Dermatol Sci 2022; 108:157-166. [PMID: 36610940 DOI: 10.1016/j.jdermsci.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hyperpigmented skin disorders such as melasma and lentigo are common photoaging diseases that cause cosmetic problems. The pigmentation is usually exacerbated by ultraviolet (UV) radiation, and various factors and pathways are involved in UV-mediated melanogenesis. Adenosine 5'-triphosphate (ATP), a well-known molecular unit of intracellular energy, is also regarded as a mediator of UV-mediated melanogenesis via the P2X7 purinergic receptor. OBJECTIVE To discover natural substances with an anti-melanogenic effect through inhibition of ATP-P2X7 axis by high-throughput screening (HTS). METHODS Among natural compounds provided by the Korea Chemical Bank, chemical compounds with a P2X7 inhibiting effect were screened through an HTS system. Then the selected compounds were verified for their anti-melanogenic effect after treating primary human epidermal melanocytes (PHEMs) with and without ATP. The expression of MITF, tyrosinase, and PMEL/gp100 was analyzed by Western blot, and melanin content was measured as 405 nm absorbance. RESULTS Among 962 natural compounds, 58 showed greater than 80% suppression of YO-PRO-1 fluorescence, representing P2X7 activity. Among them, considering cell viability, chemical stability, and availability, 7-desaxacetoxy-6,7-dehydrogedunin (7DG), a limonoid natural compound, was selected. The expression of MITF, tyrosinase, and PMEL/gp100; tyrosinase enzyme activity; and melanin content, which were increased by ATP treatment were abrogated by 7DG. Even when 7DG was treated in PHEMs without addition of ATP, tyrosinase expression and melanin content were significantly decreased. Hypopigmenting effect of 7DG was confirmed in ex vivo culture of human skins. CONCLUSIONS 7DG has an anti-melanogenic effect through ATP-P2X7 pathway inhibition and could be a potential skin whitening material.
Collapse
Affiliation(s)
- Sujin Park
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ju Choi
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Jeong Bae
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seol Hwa Seong
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jinu Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Viral vector-mediated expressions of venom peptides as novel gene therapy for anxiety and depression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Centipede Venom: A Potential Source of Ion Channel Modulators. Int J Mol Sci 2022; 23:ijms23137105. [PMID: 35806107 PMCID: PMC9266919 DOI: 10.3390/ijms23137105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Centipedes are one of the most ancient and successful living venomous animals. They have evolved spooky venoms to deter predators or hunt prey, and are widely distributed throughout the world besides Antarctica. Neurotoxins are the most important virulence factor affecting the function of the nervous system. Ion channels and receptors expressed in the nervous system, including NaV, KV, CaV, and TRP families, are the major targets of peptide neurotoxins. Insight into the mechanism of neurotoxins acting on ion channels contributes to our understanding of the function of both channels and centipede venoms. Meanwhile, the novel structure and selective activities give them the enormous potential to be modified and exploited as research tools and biological drugs. Here, we review the centipede venom peptides that act on ion channels.
Collapse
|
7
|
Recent Updates of Natural and Synthetic URAT1 Inhibitors and Novel Screening Methods. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5738900. [PMID: 34754317 PMCID: PMC8572588 DOI: 10.1155/2021/5738900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Human urate anion transporter 1 (hURAT1) is responsible for the reabsorption of uric acid in the proximal renal tubules and is a promising therapeutic target for treating hyperuricemia. To mitigate the side effects of URAT1-targeted clinical agents such as benzbromarone, there is significant interest in discovering new URAT1 inhibitors and developing technology that can evaluate URAT1 inhibition. This review summarizes the methods for assay of URAT1 inhibition and the progress on the discovery of natural and synthetic URAT1 inhibitors in the past five years.
Collapse
|
8
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
9
|
Development of a fluorescence-based assay for screening of urate transporter 1 inhibitors using 6-carboxyfluorescein. Anal Biochem 2021; 626:114246. [PMID: 33965427 DOI: 10.1016/j.ab.2021.114246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022]
Abstract
The urate transporter 1 (URAT1) inhibitors were considered a very promising class of uricosuric agents for the treatment of hyperuricemia and gout. In vitro activity testing of these compounds has been conducted by radio-labeling uric acid for a long time. However, relatively few offer the convenience and speed of fluorescence-based assays. Herein, we report the development of a non-radioactive cell-based method for the screening of URAT1 inhibitors using the human embryonic kidney 293T cells stably expressing human URAT1, and 6-carboxyfluorescein (6-CFL) as a substrate. The URAT1-mediated transport of 6-CFL was time dependent and saturable (Km = 239.5 μM, Vmax = 6.2 pmol/well/min, respectively). Molecules known to interact with organic anion transporters, including benzbromarone, probenecid, and lesinurad, demonstrated concentration-dependent inhibition of 6-CFL transport by URAT1. Moreover, we screened a small subset of compounds, and identified compound 4 as a promising URAT1 inhibitor. This in vitro assay may be employed to screen for novel URAT1 inhibitors, which are effective against hyperuricemia.
Collapse
|
10
|
Hauke TJ, Herzig V. Love bites - Do venomous arachnids make safe pets? Toxicon 2020; 190:65-72. [PMID: 33307110 DOI: 10.1016/j.toxicon.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022]
Abstract
With a global estimate of tens of thousands of arachnid enthusiasts, spiders and scorpions are gaining increasing popularity as pets in industrialised countries in Europe, Northern America and Asia. As most spiders and all scorpions are venomous and due to their mostly negative image in the public media, several governments are already considering introducing legislation to regulate the domestic care of potentially dangerous captive animals. We aimed to investigate the circumstances and effects of exposure to arachnids kept in captivity. Thus, we collected and analysed data from 354 self-reported bites and stings attributed to pet arachnids. Our data revealed that on average there were less than 20 recorded envenomations per year with ~90% preventable by due care. We also categorized the severity of the resulting symptoms and found that the vast majority of symptoms were either local (60.7%) or minor (32.8%), 5.4% were asymptomatic, only 1.1% were severe and no fatalities were recorded. Based on our database of bite and sting reports, we performed a risk assessment for arachnid pet ownership and concluded that, with the proper care, arachnids can be safely kept as pets and pose a lower risk than many other recreational activities.
Collapse
Affiliation(s)
| | - Volker Herzig
- GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
11
|
Bibič L, Stokes L. Revisiting the Idea That Amyloid-β Peptide Acts as an Agonist for P2X7. Front Mol Neurosci 2020; 13:166. [PMID: 33071753 PMCID: PMC7530339 DOI: 10.3389/fnmol.2020.00166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/11/2020] [Indexed: 01/24/2023] Open
Abstract
The P2X7 receptor (P2X7) is a cell surface ligand-gated ion channel, activated by its physiological nucleotide agonist ATP and a synthetic analog (BzATP). However, it has also been suggested that there may be structurally unrelated, non-nucleotide agonists such as the amyloidogenic β peptide. Here we aimed to reassess the effect of amyloid β peptides in various in vitro cell models, namely HEK293 overexpressing human P2X7, the microglial BV-2 cell line, and BV-2 cells lacking P2X7. We measured YO-PRO-1 dye uptake in response to full-length amyloid β peptide (1-42) or the shorter amyloid β peptide (25-35) and there was a concentration-dependent increase in YO-PRO-1 dye uptake in HEK-hP2X7 cells. However, these amyloid β peptide-induced increases in YO-PRO-1 dye uptake were also identical in non-transfected HEK-293 cells. We could observe small transient increases in [Ca2+] i induced by amyloid β peptides in BV-2 cells, however these were identical in BV-2 cells lacking P2X7. Furthermore, our metabolic viability and LDH release experiments suggest no significant change in viability or cell membrane damage in HEK-hP2X7 cells. In the BV-2 cells we found that high concentrations of amyloid β peptides (1-42) and (25-35) could reduce cell viability by up to 35% but this was also seen in BV-2 cells lacking P2X7. We found no evidence of LDH release by amyloid β peptides. In summary, we found no evidence that amyloid β peptides act as agonists of P2X7 in our in vitro models. Our study raises the possibility that amyloid β peptides simply mimic features of P2X7 activation.
Collapse
Affiliation(s)
- Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|