1
|
Quiñonero F, Ortigosa-Palomo A, Ortiz R, Melguizo C, Prados J. Fungi-Derived Bioactive Compounds as Potential Therapeutic Agents for Pancreatic Cancer: A Systematic Review. Microorganisms 2024; 12:1527. [PMID: 39203369 PMCID: PMC11356550 DOI: 10.3390/microorganisms12081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic cancer (PC) is one of the tumors with the lowest 5-year survival rate worldwide due to late diagnosis and lack of effective therapy. Because of this, it is necessary to discover new ways of treatment to increase the quality of life of patients. In this context, the secondary metabolites of several fungi have been shown as a possible therapeutic strategy in several types of cancer, such as colorectal cancer, being able to trigger their action through the induction of apoptosis. The objective was to perform a systematic review process to analyze the studies carried out during the last ten years using secondary metabolites derived from fungi as antitumor treatment against PC. After the search process in three databases (PubMed, SCOPUS, and Web of Science) a total of 199 articles were found, with 27 articles finally being included after screening. The results extracted from this systematic review process made it possible to determine the existence of bioactive compounds extracted from fungi that have been effective in in vitro and in vivo conditions and that may be applicable as a possible therapy to avoid drug resistance in PC, one of the major problems of this disease.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Alba Ortigosa-Palomo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Consolacion Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (F.Q.); (A.O.-P.); (R.O.); (J.P.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Yu X, Müller WEG, Frank M, Gao Y, Guo Z, Zou K, Proksch P, Liu Z. Caryophyllene-type sesquiterpenes from the endophytic fungus Pestalotiopsis lespedezae through an OSMAC approach. Front Microbiol 2024; 14:1248896. [PMID: 38274753 PMCID: PMC10808731 DOI: 10.3389/fmicb.2023.1248896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Two new caryophyllene-type sesquiterpenes pestalotiopsins U and V (1 and 2) and three known compounds pestalotiopsin B (7), pestaloporinate B (8), and pestalotiopsin C (9) were isolated by the cultivation of the endophytic fungus Pestalotiopsis lespedezae on solid rice medium, while four additional new caryophyllene pestalotiopsins W-Z (3-6) were obtained when 3.5% NaI was added to the fungal culture medium. The structures of the new compounds were determined by HRESIMS and 1D/2D nuclear magnetic resonance data. Compounds 1-9 were tested for cytotoxicity against the mouse lymphoma cell line L5178Y, but only 6 displayed significant activity with an IC50 value of 2.4 μM.
Collapse
Affiliation(s)
- Xiaoqin Yu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Werner E. G. Müller
- Institute of Physiological Chemistry, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marian Frank
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ying Gao
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhiyong Guo
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Peter Proksch
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Zhen Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Song J, Ren L, Ren Z, Ren X, Qi Y, Qin Y, Zhang X, Ren Y, Li Y. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of 4-butyl-polyhydroxybenzophenone compounds against NAFLD. Eur J Med Chem 2023; 260:115728. [PMID: 37625288 DOI: 10.1016/j.ejmech.2023.115728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The mitochondria have been identified as key targets in nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver damage diseases globally. Meanwhile, the biological information analysis in this study revealed that SIRT1, PPARG, PPARA, and PPARGC1A (mitochondrial biogenesis-related proteins) were NAFLD therapeutic targets. Therefore, the design and synthesis of targeted drugs that promote mitochondrial biogenesis and improve mitochondrial function are particularly important for NAFLD treatment. Recently, we introduced butyls, hydroxyls, and halogens to benzophenone and synthesized a series of NAFLD-related 4-butylpolyhydroxybenzophenone compounds, aiming at investigating the hepatoprotective activity from the aspect of mitochondrial biogenesis. The structure-activity relationship demonstrated that hydroxyl and ketone groups were active groups interacting with mitochondrial biogenesis proteins (SIRT1 and PGC1α), and the activity was stronger when the o-hydroxyl group was present on the benzene ring. In contrast, the activity was little affected by the presence of the p-hydroxyl group, m-hydroxyl group, butyl group type, or halogen. In addition, in vitro studies confirmed that these compounds could directly bind to SIRT1 and PGC1α, markedly promote their interaction, significantly increase the expression of proteins and genes related to mitochondrial biogenesis (SIRT1, PGC1α, NRF1, TFAM, COX1, and ND6) and subsequently ameliorate mitochondria dysfunction, which was evidenced by the decreased ROS, upregulated ATP production, increased MMP, and enhanced mitochondrial number. According to the outcomes of our in vitro and in vivo experiments, 4-butyl-polyhydroxybenzophenone compounds could also effectively reduce the formation of lipid droplets and liver injury index (ALT, AST, LDH, AKP, γ-GT, and GDH) and improve the level of antioxidant enzymes (GSH and SOD). Particularly, the treatment of these compounds after a high-fat diet could significantly reduce body weight, decrease liver coefficient, attenuate liver damage, and ameliorate lipid accumulation in rat liver, demonstrating their therapeutic effects on NAFLD. Mechanistically, 4-butyl-polyhydroxybenzophenone compounds promoted mitochondrial biogenesis and eventually prevented NAFLD liver injury by activating the PGC1α signaling pathway in a SIRT1-dependent manner, which was strongly supported by SIRT1 inhibitor EX527.
Collapse
Affiliation(s)
- Jiayu Song
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Luyao Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Zhenzhu Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xing Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yang Qi
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yuxi Qin
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xiaohui Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yuan Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, PR China; School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, PR China.
| |
Collapse
|
4
|
Ibrahim SRM, Fahad ALsiyud D, Alfaeq AY, Mohamed SGA, Mohamed GA. Benzophenones-natural metabolites with great Hopes in drug discovery: structures, occurrence, bioactivities, and biosynthesis. RSC Adv 2023; 13:23472-23498. [PMID: 37546221 PMCID: PMC10402873 DOI: 10.1039/d3ra02788k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Fungi have protruded with enormous development in the repository of drug discovery, making them some of the most attractive sources for the synthesis of bio-significant and structural novel metabolites. Benzophenones are structurally unique metabolites with phenol/carbonyl/phenol frameworks, that are separated from microbial and plant sources. They have drawn considerable interest from researchers due to their versatile building blocks and diversified bio-activities. The current work aimed to highlight the reported data on fungal benzophenones, including their structures, occurrence, and bioactivities in the period from 1963 to April 2023. Overall, 147 benzophenones derived from fungal source were listed in this work. Structure activity relationships of the benzophenones derivatives have been discussed. Also, in this review, a brief insight into their biosynthetic routes was presented. This work could shed light on the future research of benzophenones.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College Jeddah 21442 Saudi Arabia +966-581183034
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Duaa Fahad ALsiyud
- Department of Medical Laboratories - Hematology, King Fahd Armed Forces Hospital Corniche Road, Andalus Jeddah 23311 Saudi Arabia
| | - Abdulrahman Y Alfaeq
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs Jeddah 22384 Saudi Arabia
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City Suez Desert Road Cairo 11837 Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
5
|
Jiang P, Fu X, Niu H, Chen S, Liu F, Luo Y, Zhang D, Lei H. Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure-activity relationship, and biosynthesis. Arch Pharm Res 2023:10.1007/s12272-023-01453-2. [PMID: 37389739 DOI: 10.1007/s12272-023-01453-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Strains of the fungal genus Pestalotiopsis are reported as large promising sources of structurally varied biologically active metabolites. Many bioactive secondary metabolites with diverse structural features have been derived from Pestalotiopsis. Moreover, some of these compounds can potentially be developed into lead compounds. Herein, we have systematically reviewed the chemical constituents and bioactivities of the fungal genus Pestalotiopsis, covering a period ranging from January 2016 to December 2022. As many as 307 compounds, including terpenoids, coumarins, lactones, polyketides, and alkaloids, were isolated during this period. Furthermore, for the benefit of readers, the biosynthesis and potential medicinal value of these new compounds are also discussed in this review. Finally, the perspectives and directions for future research and the potential applications of the new compounds are summarized in various tables.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Chang S, Yan B, Chen Y, Zhao W, Gao R, Li Y, Yu L, Xie Y, Si S, Chen M. Cytotoxic hexadepsipeptides and anti-coronaviral 4-hydroxy-2-pyridones from an endophytic Fusarium sp. Front Chem 2023; 10:1106869. [PMID: 36712984 PMCID: PMC9877305 DOI: 10.3389/fchem.2022.1106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Three new hexadepsipeptides (1-3), along with beauvericin (4), beauvericin D (5), and four 4-hydroxy-2-pyridone derivatives (6-9) were isolated from the endophytic fungus Fusarium sp. CPCC 400857 that derived from the stem of tea plant. Their structures were determined by extensive 1D and 2D NMR, and HRESIMS analyses. The absolute configuration of hexadepsipeptides were elucidated by the advanced Marfey's method and chiral HPLC analysis. Compounds 4, and 7-9 displayed the cytotoxicity against human pancreatic cancer cell line, AsPC-1 with IC50 values ranging from 3.45 to 29.69 μM, and 7 and 8 also showed the antiviral activity against the coronavirus (HCoV-OC43) with IC50 values of 13.33 and 6.65 μM, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuyi Si
- *Correspondence: Shuyi Si, ; Minghua Chen,
| | | |
Collapse
|
7
|
Pestalotiopsis Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228088. [PMID: 36432188 PMCID: PMC9695833 DOI: 10.3390/molecules27228088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Pestalotiopsis species have gained attention thanks to their structurally complex and biologically active secondary metabolites. In past decades, several new secondary metabolites were isolated and identified. Their bioactivities were tested, including anticancer, antifungal, antibacterial, and nematicidal activity. Since the previous review published in 2014, new secondary metabolites were isolated and identified from Pestalotiopsis species and unidentified strains. This review gathered published articles from 2014 to 2021 and focused on 239 new secondary metabolites and their bioactivities. To date, 384 Pestalotiopsis species have been discovered in diverse ecological habitats, with the majority of them unstudied. Some may contain secondary metabolites with unique bioactivities that might benefit pharmacology.
Collapse
|
8
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
9
|
Halogenase-Targeted Genome Mining Leads to the Discovery of (±) Pestalachlorides A1a, A2a, and Their Atropisomers. Antibiotics (Basel) 2022; 11:antibiotics11101304. [PMID: 36289962 PMCID: PMC9598291 DOI: 10.3390/antibiotics11101304] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Genome mining has become an important tool for discovering new natural products and identifying the cryptic biosynthesis gene clusters. Here, we utilized the flavin-dependent halogenase GedL as the probe in combination with characteristic halogen isotope patterns to mine new halogenated secondary metabolites from our in-house fungal database. As a result, two pairs of atropisomers, pestalachlorides A1a (1a)/A1b (1b) and A2a (2a)/A2b (2b), along with known compounds pestalachloride A (3) and SB87-H (4), were identified from Pestalotiopsis rhododendri LF-19-12. A plausible biosynthetic assembly line for pestalachlorides involving a putative free-standing phenol flavin-dependent halogenase was proposed based on bioinformatics analysis. Pestalachlorides exhibited antibacterial activity against sensitive and drug-resistant S. aureus and E. faecium with MIC values ranging from 4 μg/mL to 32 μg/mL. This study indicates that halogenase-targeted genome mining is an efficient strategy for discovering halogenated compounds and their corresponding halogenases.
Collapse
|
10
|
Sultana S, Rubio PYM, Khanal HD, Lee YR. Sc(OTf) 3/BF 3·OEt 2-Catalyzed Annulation of 3-Formylchromones with Functionalized Alkenes: Access to Diverse 2-Hydroxybenzophenones. Org Lett 2022; 24:4360-4364. [PMID: 35678709 DOI: 10.1021/acs.orglett.2c01538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Sc(OTf)3/BF3·OEt2-catalyzed annulation of 3-formylchromones with functionalized alkenes for the direct construction of 2-hydroxybenzophenones is described. Sc(OTf)3/BF3·OEt2 acts as a synergistic catalyst, providing rapid synthetic access to diversely and highly functionalized 2-hydroxybenzophenones. This reaction has excellent regio- and chemoselectivities and is suitable for late-stage functionalization. The reaction proceeds via [3 + 3] and [4 + 2] cycloaddition processes, through carbonyl-ene, Diels-Alder, or aldol-type reactions. Furthermore, this protocol tolerates the various functional groups present in natural terpenes and steroids.
Collapse
Affiliation(s)
- Sabera Sultana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
11
|
Wang J, Pang X, Chen C, Gao C, Zhou X, Liu Y, Luo X. Chemistry, Biosynthesis, and Biological Activity of Halogenated Compounds Produced by Marine Microorganisms. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Chenghai Gao
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaowei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
12
|
Jiang Z, Wu P, Li H, Xue J, Wei X. Pestalotinones A-D, new benzophenone antibiotics from endophytic fungus Pestalotiopsis trachicarpicola SC-J551. J Antibiot (Tokyo) 2022; 75:207-212. [PMID: 35115699 DOI: 10.1038/s41429-022-00510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Four new pestalone-type benzophenones, pestalotinones A-D (1-4), along with six known congeners, pestalone, pestalone E-F, SB87-Cl, SB87-H, and pestalachloride B, were isolated from the endophytic fungus Pestalotiopsis trachicarpicola SC-J551 cultivated on rice grains. Their structures were established by extensive spectroscopic analysis. Compounds 1-3 exhibited potent activity against Staphylococcus aureus and MRSA (MIC: 1.25-2.5 μg ml-1) while no cytotoxicity against Vero cells (IC50 > 50 μM). The activity profile of this group of compounds suggested that replacement of the C-14 aldehyde with an oxymethyl greatly increases their activity and selectivity towards the bacteria and chlorine substitutions result in the increase of antibacterial activity and slight decrease of cytotoxicity against the mammalian cells.
Collapse
Affiliation(s)
- Zhiming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China.,School of Life Sciences, University of Chinese Academy of Sciences, Yuquanlu 19A, Beijing, 100049, People's Republic of China
| | - Ping Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China.
| | - Hanxiang Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Jinghua Xue
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
13
|
Metabolites of Marine Sediment-Derived Fungi: Actual Trends of Biological Activity Studies. Mar Drugs 2021; 19:md19020088. [PMID: 33557071 PMCID: PMC7913796 DOI: 10.3390/md19020088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Marine sediments are characterized by intense degradation of sedimenting organic matter in the water column and near surface sediments, combined with characteristically low temperatures and elevated pressures. Fungi are less represented in the microbial communities of sediments than bacteria and archaea and their relationships are competitive. This results in wide variety of secondary metabolites produced by marine sediment-derived fungi both for environmental adaptation and for interspecies interactions. Earlier marine fungal metabolites were investigated mainly for their antibacterial and antifungal activities, but now also as anticancer and cytoprotective drug candidates. This review aims to describe low-molecular-weight secondary metabolites of marine sediment-derived fungi in the context of their biological activity and covers research articles published between January 2016 and November 2020.
Collapse
|
14
|
Wang C, Lu H, Lan J, Zaman KHA, Cao S. A Review: Halogenated Compounds from Marine Fungi. Molecules 2021; 26:458. [PMID: 33467200 PMCID: PMC7830638 DOI: 10.3390/molecules26020458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Marine fungi produce many halogenated metabolites with a variety of structures, from acyclic entities with a simple linear chain to multifaceted polycyclic molecules. Over the past few decades, their pharmaceutical and medical application have been explored and still the door is kept open due to the need of new drugs from relatively underexplored sources. Biological properties of halogenated compounds such as anticancer, antiviral, antibacterial, anti-inflammatory, antifungal, antifouling, and insecticidal activity have been investigated. This review describes the chemical structures and biological activities of 217 halogenated compounds derived mainly from Penicillium and Aspergillus marine fungal strains reported from 1994 to 2019.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; (H.L.); (J.L.)
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i, Hilo, HI 96720, USA;
| | - Huanyun Lu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; (H.L.); (J.L.)
| | - Jianzhou Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; (H.L.); (J.L.)
| | - KH Ahammad Zaman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i, Hilo, HI 96720, USA;
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i, Hilo, HI 96720, USA;
| |
Collapse
|
15
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
16
|
Mei R, Shi Y, Zhang S, Hu J, Zhu L, Gan J, Cai L, Ding Z. Biotransformation of 1,8-Dihydroxyanthraquinone into Peniphenone under the Fermentation of Aleurodiscus mirabilis. ACS OMEGA 2020; 5:33380-33386. [PMID: 33403300 PMCID: PMC7774269 DOI: 10.1021/acsomega.0c05216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 05/12/2023]
Abstract
The present study verified that 1,8-dihydroxyanthraquinone (1), a common component in some industrial raw materials and dyes, could be converted into peniphenone (2), which possesses immunosuppressive activity and other medicinal potential, by Aleurodiscus mirabilis fermentation. The yield of peniphenone (2) after 7 days of fermentation was 11.05 ± 2.19%. To reveal the transformation mechanism, two secondary metabolites, emodin (3) and monodictyphenone (4), were isolated from the fermentation broth of A. mirabilis, implying that polyketide metabolic pathways from emodin (3) to monodictyphenone (4) might exist in A. mirabilis. 1,8-Dihydroxyanthraquinone (1) was suspected to be converted into peniphenone (2) via the same pathway since emodin (3) and 1,8-dihydroxyanthraquinone (1) share very similar skeletons. The P450 enzyme and Baeyer-Villiger oxidase in A. mirabilis were confirmed to catalyze this biotransformation on the basis of ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. This novel investigation could shed light on the mechanism and therefore development of peniphenone production from 1,8-dihydroxyanthraquinone by microbial fermentation.
Collapse
Affiliation(s)
- Ruifeng Mei
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yaxian Shi
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| | - Shengqi Zhang
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| | - Juntao Hu
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| | - Li Zhu
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| | - Junli Gan
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| | - Le Cai
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhongtao Ding
- School of Life Sciences,
Functional Molecules Analysis and Biotransformation Key Laboratory
of Universities in Yunnan Province, School of Chemical Science and
Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
17
|
Ahamefule CS, Ezeuduji BC, Ogbonna JC, Moneke AN, Ike AC, Wang B, Jin C, Fang W. Marine Bioactive Compounds against Aspergillus fumigatus: Challenges and Future Prospects. Antibiotics (Basel) 2020; 9:E813. [PMID: 33207554 PMCID: PMC7698247 DOI: 10.3390/antibiotics9110813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
With the mortality rate of invasive aspergillosis caused by Aspergillus fumigatus reaching almost 100% among some groups of patients, and with the rapidly increasing resistance of A. fumigatus to available antifungal drugs, new antifungal agents have never been more desirable than now. Numerous bioactive compounds were isolated and characterized from marine resources. However, only a few exhibited a potent activity against A. fumigatus when compared to the multitude that did against some other pathogens. Here, we review the marine bioactive compounds that display a bioactivity against A. fumigatus. The challenges hampering the discovery of antifungal agents from this rich habitat are also critically analyzed. Further, we propose strategies that could speed up an efficient discovery and broaden the dimensions of screening in order to obtain promising in vivo antifungal agents with new modes of action.
Collapse
Affiliation(s)
- Chukwuemeka Samson Ahamefule
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | | | - James C. Ogbonna
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Anene N. Moneke
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Anthony C. Ike
- Department of Microbiology, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (J.C.O.); (A.N.M.); (A.C.I.)
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China; (C.S.A.); (B.W.)
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
18
|
Lei H, Zhang D, Ding N, Chen S, Song C, Luo Y, Fu X, Bi X, Niu H. New cytotoxic natural products from the marine sponge-derived fungus Pestalotiopsis sp. by epigenetic modification. RSC Adv 2020; 10:37982-37988. [PMID: 35515153 PMCID: PMC9057218 DOI: 10.1039/d0ra06983c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Four new polyketide derivatives, pestalotiopols A–D (1–4), together with seven known compounds (5–11), were isolated from a chemical-epigenetic culture of Pestalotiopsis sp. The structures and absolute configurations of the new compounds (1–4) were determined by spectroscopic analyses, Mo2-induced CD, and electronic circular dichroism (ECD) calculations. All the isolated compounds (1–11) were tested for their cytotoxic activities. Among these compounds, compounds 1, 2, 6 and 7 exhibited cytotoxicity against four human cancer cell lines with IC50 values of 16.5–56.5 μM. The structure–activity relationships of compounds (1–11) were examined. The results indicated that both the diol system of the side chain and the aldehyde group might contribute to the cytotoxic activity. The possible biosynthetic pathways for compounds (1–4) were also postulated. Four new polyketide derivatives, pestalotiopols A–D (1–4), together with seven known compounds (5–11), were isolated from a chemical-epigenetic culture of Pestalotiopsis sp.![]()
Collapse
Affiliation(s)
- Hui Lei
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 People's Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 People's Republic of China
| | - Nan Ding
- Institute of Pathogenic Biology, University of South China Hengyang 421001 People's Republic of China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 People's Republic of China
| | - Can Song
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 People's Republic of China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 People's Republic of China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 People's Republic of China
| | - Xiaoxu Bi
- College of Agriculture and Life Sciences, Kunming University Kunming Yunnan 50241 People's Republic of China
| | - Hong Niu
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 People's Republic of China
| |
Collapse
|
19
|
Lei H, Niu H, Song C, Fu X, Luo Y, Chen S, Zhang D. Chlorinated benzophenone derivatives as chemotaxonomic markers for the genus of Pestalotiopsis. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Hassan MM, Olaoye OO. Recent Advances in Chemical Biology Using Benzophenones and Diazirines as Radical Precursors. Molecules 2020; 25:E2285. [PMID: 32414020 PMCID: PMC7288102 DOI: 10.3390/molecules25102285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|