1
|
Ishiwata A, Zhong X, Tanaka K, Ito Y, Ding F. ZnI 2-Mediated cis-Glycosylations of Various Constrained Glycosyl Donors: Recent Advances in cis-Selective Glycosylations. Molecules 2024; 29:4710. [PMID: 39407638 PMCID: PMC11477539 DOI: 10.3390/molecules29194710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
An efficient and versatile glycosylation methodology is crucial for the systematic synthesis of oligosaccharides and glycoconjugates. A direct intermolecular and an indirect intramolecular methodology have been developed, and the former can be applied to the synthesis of medium-to-long-chain glycans like that of nucleotides and peptides. The development of a generally applicable approach for the stereoselective construction of glycosidic bonds remains a major challenge, especially for the synthesis of 1,2-cis glycosides such as β-mannosides, β-L-rhamnosides, and β-D-arabinofuranosides with equatorial glycosidic bonds as well as α-D-glucosides with axial ones. This review introduces the direct formation of cis-glycosides using ZnI2-mediated cis-glycosylations of various constrained glycosyl donors, as well as the recent advances in the development of stereoselective cis-glycosylations.
Collapse
Affiliation(s)
- Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
2
|
Chen Z, Xiao G. Total Synthesis of Nona-decasaccharide Motif from Ganoderma sinense Polysaccharide Enabled by Modular and One-Pot Stereoselective Glycosylation Strategy. J Am Chem Soc 2024; 146:17446-17455. [PMID: 38861463 DOI: 10.1021/jacs.4c05188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Polysaccharides from a medicinal fungus Ganoderma sinense represent important and adjunctive therapeutic agents for treating various diseases, including leucopenia and hematopoietic injury. However, the synthetic accessibility to long, branched, and complicated carbohydrates chains from Ganoderma sinense polysaccharides remains a challenging task in chemical synthesis. Here, we report the modular chemical synthesis of nona-decasaccharide motif from Ganoderma sinense polysaccharide GSPB70-S with diverse biological activities for the first time through one-pot stereoselective glycosylation strategy on the basis of glycosyl ortho-(1-phenyvinyl)benzoates, which not only sped up carbohydrates synthesis but also reduced chemical waste and avoided aglycones transfer issues inherent to one-pot glycosylation on the basis of thioglycosides. The synthetic route also highlights the following key steps: (1) preactivation-based one-pot glycosylation for highly stereoselective constructions of several 1,2-cis-glycosidic linkages, including three α-d-GlcN-(1 → 4) linkages and one α-d-Gal-(1 → 4) bond via the reagent N-methyl-N-phenylformamide modulation; (2) orthogonal one-pot assembly of 1,2-trans-glycosidic linkages in various linear and branched glycans fragments by strategic combinations of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl ortho-(1-phenyvinyl)benzoates; and (3) the final [1 × 4 + 15] Yu glycosylation for efficient assembly of nona-decasaccharide target. Additionally, shorter sequences of 4-mer, 5-mer, and 6-mer are also prepared for structure-activity relationship biological studies. The present work shows that this one-pot stereoselective glycosylation strategy can offer a reliable and effective means to streamline chemical synthesis of long, branched, and complex carbohydrates with many 1,2-cis-glycosidic bonds.
Collapse
Affiliation(s)
- Zhiyuan Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Yang X, Zhang H, Zhao Q, Li Q, Li T, Gao J. Total Synthesis of the Repeating Units of Highly Functionalized O-Antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19. JACS AU 2024; 4:2351-2362. [PMID: 38938791 PMCID: PMC11200240 DOI: 10.1021/jacsau.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
The first total synthesis of the repeating units of the O-antigens of Pseudomonas aeruginosa ATCC 27577, O10, and O19 was achieved via a linear glycosylation strategy. This also represents the first synthesis of an oligosaccharide containing an α-linked N-acetyl-l-galactosaminuronic acid (l-GalpNAcA) unit. All of the glycosyl linkages, including three challenging 1,2-cis-glycosidic bonds of amino sugars, were effectively constructed with high to exclusive stereoselectivity, while orthogonal protection tactics were employed to facilitate regioselective glycosylations and the introduction of a variety of functionalities. An acetyl group migration phenomenon was found during the synthesis of the O-acylated repeating unit of the P. aeruginosa ATCC 27577 antigen. All synthetic targets carried an amino functional group in the linker at the reducing end, thus facilitating further regioselective elaboration and biological studies. The synthetic strategy established here should be useful for the preparation of other similar oligosaccharides.
Collapse
Affiliation(s)
- Xiaoyu Yang
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Han Zhang
- Department
of Pharmacy, Shandong University of Traditional
Chinese Medicine, Jinan ,Shandong 250355, China
| | - Qingpeng Zhao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| | - Qingjiang Li
- Department
of Chemistry, University of Massachusetts
Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Tiehai Li
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Materia
Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Gao
- National
Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate
Chemistry and Glycobiology, Shandong University, Qingdao ,Shandong 266237, China
- NMPA
Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based
Medicine, Shandong University, Qingdao ,Shandong 266237, China
| |
Collapse
|
4
|
Shou K, Zhang Y, Ji Y, Liu B, Zhou Q, Tan Q, Li F, Wang X, Lu G, Xiao G. Highly stereoselective α-glycosylation with GalN 3 donors enabled collective synthesis of mucin-related tumor associated carbohydrate antigens. Chem Sci 2024; 15:6552-6561. [PMID: 38699257 PMCID: PMC11062124 DOI: 10.1039/d4sc01348d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Mucin-related tumor-associated carbohydrate antigens (TACAs) are important and interesting targets for cancer vaccine therapy. However, efficient access to a library of mucin-related TACAs remains a challenging task. One of the key issues is the challenging construction of α-GalNAc linkages. Here, we report highly stereoselective α-glycosylation with GalN3N-phenyl trifluoroacetimidate donors, which features excellent yields, outstanding stereoselectivities, broad substrate scope and mild reaction conditions. This method is successfully applied to highly stereoselective synthesis of GalN3-α-O-Ser, which served as the common intermediate for collective synthesis of a wide range of TACAs including TN antigen, STN antigen, 2,6 STF antigen, 2,3 STF antigen, glycophorin and cores 1-8 mucin-type O-glycans. In particular, the rationale for this highly stereoselective α-glycosylation is provided for the first time using DFT calculations and mechanistic studies, highlighting the crucial roles of reagent combinations (TMSI and Ph3PO) and the H-bonding directing effect of the N3 group.
Collapse
Affiliation(s)
- Kunxiu Shou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yujie Ji
- School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Bin Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Qingli Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Qiang Tan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Fuying Li
- Department of Chemistry, Kunming University 2 Puxing Road Kunming 650214 China
| | - Xiufang Wang
- Department of Chemistry, Kunming University 2 Puxing Road Kunming 650214 China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
5
|
Moons PH, Ter Braak F, de Kleijne FFJ, Bijleveld B, Corver SJR, Houthuijs KJ, Almizori HR, Berden G, Martens J, Oomens J, White PB, Boltje TJ. Characterization of elusive rhamnosyl dioxanium ions and their application in complex oligosaccharide synthesis. Nat Commun 2024; 15:2257. [PMID: 38480691 PMCID: PMC10937939 DOI: 10.1038/s41467-024-46522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Attaining complete anomeric control is still one of the biggest challenges in carbohydrate chemistry. Glycosyl cations such as oxocarbenium and dioxanium ions are key intermediates of glycosylation reactions. Characterizing these highly-reactive intermediates and understanding their glycosylation mechanisms are essential to the stereoselective synthesis of complex carbohydrates. Although C-2 acyl neighbouring-group participation has been well-studied, the reactive intermediates in more remote participation remain elusive and are challenging to study. Herein, we report a workflow that is utilized to characterize rhamnosyl 1,3-bridged dioxanium ions derived from C-3 p-anisoyl esterified donors. First, we use a combination of quantum-chemical calculations and infrared ion spectroscopy to determine the structure of the cationic glycosylation intermediate in the gas-phase. In addition, we establish the structure and exchange kinetics of highly-reactive, low-abundance species in the solution-phase using chemical exchange saturation transfer, exchange spectroscopy, correlation spectroscopy, heteronuclear single-quantum correlation, and heteronuclear multiple-bond correlation nuclear magnetic resonance spectroscopy. Finally, we apply C-3 acyl neighbouring-group participation to the synthesis of complex bacterial oligosaccharides. This combined approach of finding answers to fundamental physical-chemical questions and their application in organic synthesis provides a robust basis for elucidating highly-reactive intermediates in glycosylation reactions.
Collapse
Affiliation(s)
- Peter H Moons
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floor Ter Braak
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Frank F J de Kleijne
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Bart Bijleveld
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Sybren J R Corver
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kas J Houthuijs
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Hero R Almizori
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Giel Berden
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX laboratory, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Paul B White
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Ruijgrok G, Wu DY, Overkleeft HS, Codée JDC. Synthesis and application of bacterial exopolysaccharides. Curr Opin Chem Biol 2024; 78:102418. [PMID: 38134611 DOI: 10.1016/j.cbpa.2023.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Exopolysaccharides are produced and excreted by bacteria in the generation of biofilms to provide a protective environment. These polysaccharides are generally generated as heterogeneous polymers of varying length, featuring diverse substitution patterns. To obtain well-defined fragments of these polysaccharides, organic synthesis often is the method of choice, as it allows for full control over chain length and the installation of a pre-determined substitution pattern. This review presents several recent syntheses of exopolysaccharide fragments of Pseudomonas aeruginosa and Staphylococcus aureus and illustrates how these have been used to study biosynthesis enzymes and generate synthetic glycoconjugate vaccines.
Collapse
Affiliation(s)
- Gijs Ruijgrok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Dung-Yeh Wu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, CC Leiden, the Netherlands.
| |
Collapse
|
7
|
Li T, Zhang M, Lv P, Yang Y, Schmidt RR, Peng P. Synthesis of Core M3 Matriglycan Constituents via an Additive-Controlled 1,2- cis-Xylopyranosylation with O-Xylosyl Imidates as Donors. J Org Chem 2024; 89:804-809. [PMID: 38146924 DOI: 10.1021/acs.joc.3c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
A highly stereoselective strategy for 1,2-cis-xylopyranoside bond formation was established via a preactivation-based, additive-modulated trichloroacetimidate glycosidation strategy. The current protocol is mild, practical, and successful with various xylopyranosyl donors and glycosyl acceptors, including acceptors that are reported to be less reactive due to steric hindrance. The utility of this method was demonstrated with the facile assembly of matriglycan constituent tetra- and hexasaccharides.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Panpan Lv
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Yue Yang
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Technology Innovation Center of Carbohydrate, Qingdao, Shandong 266237, China
| |
Collapse
|
8
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
9
|
Ishiwata A, Tanaka K, Ito Y, Cai H, Ding F. Recent Progress in 1,2- cis glycosylation for Glucan Synthesis. Molecules 2023; 28:5644. [PMID: 37570614 PMCID: PMC10420028 DOI: 10.3390/molecules28155644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 08/13/2023] Open
Abstract
Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, Saitama 351-0198, Japan
- Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
10
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Hirao K, Speciale I, Notaro A, Manabe Y, Teramoto Y, Sato T, Atomi H, Molinaro A, Ueda Y, De Castro C, Fukase K. Structural Determination and Chemical Synthesis of the N-Glycan from the Hyperthermophilic Archaeon Thermococcus kodakarensis. Angew Chem Int Ed Engl 2023; 62:e202218655. [PMID: 36719065 DOI: 10.1002/anie.202218655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN 2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.
Collapse
Affiliation(s)
- Kohtaro Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiaki Teramoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
12
|
Ishiwata A, Tanaka K, Ao J, Ding F, Ito Y. Recent advances in stereoselective 1,2- cis- O-glycosylations. Front Chem 2022; 10:972429. [PMID: 36059876 PMCID: PMC9437320 DOI: 10.3389/fchem.2022.972429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023] Open
Abstract
For the stereoselective assembly of bioactive glycans with various functions, 1,2-cis-O-glycosylation is one of the most essential issues in synthetic carbohydrate chemistry. The cis-configured O-glycosidic linkages to the substituents at two positions of the non-reducing side residue of the glycosides such as α-glucopyranoside, α-galactopyranoside, β-mannopyranoside, β-arabinofuranoside, and other rather rare glycosides are found in natural glycans, including glycoconjugate (glycoproteins, glycolipids, proteoglycans, and microbial polysaccharides) and glycoside natural products. The way to 1,2-trans isomers is well sophisticated by using the effect of neighboring group participation from the most effective and kinetically favored C-2 substituent such as an acyl group, although high stereoselective synthesis of 1,2-cis glycosides without formation of 1,2-trans isomers is far less straightforward. Although the key factors that control the stereoselectivity of glycosylation are largely understood since chemical glycosylation was considered to be one of the useful methods to obtain glycosidic linkages as the alternative way of isolation from natural sources, strictly controlled formation of these 1,2-cis glycosides is generally difficult. This minireview introduces some of the recent advances in the development of 1,2-cis selective glycosylations, including the quite recent developments in glycosyl donor modification, reaction conditions, and methods for activation of intermolecular glycosylation, including the bimodal glycosylation strategy for 1,2-cis and 1,2-trans glycosides, as well as intramolecular glycosylations, including recent applications of NAP-ether-mediated intramolecular aglycon delivery.
Collapse
Affiliation(s)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Njeri DK, Ragains JR. Total Synthesis of an All-1,2- cis-Linked Repeating Unit from the Acinetobacter baumannii D78 Capsular Polysaccharide. Org Lett 2022; 24:3461-3465. [PMID: 35522755 PMCID: PMC9127968 DOI: 10.1021/acs.orglett.2c01034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chemical synthetic
efforts have resulted in the preparation of
the assigned tetrasaccharide repeating subunit from the Acinetobacter
baumannii KL4-associated capsular polysaccharide. A convergent
synthetic strategy hinging on a 1,2-cis-selective
[2+2] glycosylation to generate the fully protected tetrasaccharide
was key to the success of this synthesis.
Collapse
Affiliation(s)
- Dancan K Njeri
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| | - Justin R Ragains
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70806, United States
| |
Collapse
|
14
|
Zhang Y, Wang L, Overkleeft HS, van der Marel GA, Codée JDC. Assembly of a Library of Pel-Oligosaccharides Featuring α-Glucosamine and α-Galactosamine Linkages. Front Chem 2022; 10:842238. [PMID: 35155372 PMCID: PMC8826555 DOI: 10.3389/fchem.2022.842238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa, a pathogenic Gram-negative bacterium for which currently antibiotic resistance is posing a significant problem and for which no vaccines are available, protects itself by the formation of a biofilm. The Pel polysaccharide, a cationic polymer composed of cis-linked galactosamine (GalN), N-acetyl galactosamine (GalNAc), glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) monosaccharides, is an important constituent of the biofilm. Well-defined Pel oligosaccharides will be valuable tools to probe the biosynthesis machinery of this polysaccharide and may serve as diagnostic tools or be used as components of glycoconjugate vaccines. We here, report on the development of synthetic chemistry to access well-defined Pel-oligosaccharides. The chemistry hinges on the use of di-tert-butylsilylidene protected GalN and GlcN building blocks, which allow for completely cis-selective glycosylation reactions. We show the applicability of the chemistry by the assembly of a matrix of 3 × 6 Pel heptasaccharides, which has been generated from a single set of suitably protected Pel heptasaccharides, in which a single glucosamine residue is incorporated and positioned at different places along the Pel oligo-galactosamine chain.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Liming Wang
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, China
| | | | | | - Jeroen D. C. Codée
- Institute of Chemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen D. C. Codée,
| |
Collapse
|
15
|
Zhang M, Li T, Peng P. Recent development in additive modulated stereoselective glycosidation reactions. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2027432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Miaomiao Zhang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Tianlu Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Paul A, Kulkarni SS. Synthesis of L-hexoses: an Update. CHEM REC 2021; 21:3224-3237. [PMID: 34075685 DOI: 10.1002/tcr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Over the years, carbohydrates have increasingly become an important class of compounds contributing significantly to the target specific drug discovery and vaccine development. Several oligosaccharides contain L-hexoses that are biologically relevant as therapeutic and diagnostic tools. Since, L-hexoses and deoxy L-hexoses are not readily available in large amount and pure form, attention is drawn towards development of cost effective and high yielding synthetic routes for their procurement. In this review we give an update on the recent developments in strategies for synthesis of L-hexoses and deoxy L-hexoses.
Collapse
Affiliation(s)
- Ankita Paul
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
17
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α‐Glycans up to a 30‐mer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
18
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α-Glycans up to a 30-mer. Angew Chem Int Ed Engl 2021; 60:12597-12606. [PMID: 33763930 DOI: 10.1002/anie.202103826] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
19
|
Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Dračínský M, Karban J. Use of remote acyl groups for stereoselective 1,2-cis-glycosylation with fluorinated glucosazide thiodonors. Org Biomol Chem 2020; 18:5427-5434. [DOI: 10.1039/d0ob01065k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing remote O-acyl protecting groups enabled 1,2-cis stereoselective glycosylation with fluorinated glucosazide glycosyl donors.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
- University of Chemistry and Technology Prague
- 16628 Praha 6
| | | | - Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
- University of Chemistry and Technology Prague
- 16628 Praha 6
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS
- Praha 6
- Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS
- 16502 Praha 6
- Czech Republic
| |
Collapse
|