1
|
Rodríguez SJ, Kozuch S. Heavy-atom tunnelling in benzene isomers: how many tricyclic species are truly stable? Chem Sci 2024:d4sc05109b. [PMID: 39345775 PMCID: PMC11428002 DOI: 10.1039/d4sc05109b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
The variety of possible benzene isomers may provide a fundamental basis for understanding structural and reactivity patterns in organic chemistry. However, the vast majority of these isomers remain unsynthesized, while most of the experimentally known species are only moderately stable. Consequently, there is a high probability that the theoretically proposed isomers would also be barely metastable, a factor that must be taken into account if their creation in the laboratory is sought. In this work, we studied the kinetic stability of all 73 hypothetical tricyclic benzene isomers, especially focusing on their nuclear quantum effects. With this in mind, we evaluated which species are theoretically possible to synthesize, detect, and isolate. Our computations predict that 26% of the previously deemed stable molecules are completely unsynthesizable due to their intrinsic quantum tunnelling instability pushing for their unimolecular decomposition even close to the absolute zero. Five more systems would be detectable, but they will slowly and inevitably degrade, while seven more supposedly stable systems will break apart in barrierless mechanisms.
Collapse
Affiliation(s)
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| |
Collapse
|
2
|
Conte R, Aieta C, Cazzaniga M, Ceotto M. A Perspective on the Investigation of Spectroscopy and Kinetics of Complex Molecular Systems with Semiclassical Approaches. J Phys Chem Lett 2024; 15:7566-7576. [PMID: 39024505 DOI: 10.1021/acs.jpclett.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this Perspective we show that semiclassical methods provide a rigorous hierarchical way to study the vibrational spectroscopy and kinetics of complex molecular systems. The time averaged approach to spectroscopy and the semiclassical transition state theory for kinetics, which have been first adopted and then further developed in our group, provide accurate quantum results on rigorous physical grounds and can be applied even when dealing with a large number of degrees of freedom. In spectroscopy, the multiple coherent, divide-and-conquer, and adiabatically switched semiclassical approaches have practically permitted overcoming issues related to the convergence of results. In this Perspective we demonstrate the possibility of studying the semiclassical vibrational spectroscopy of a molecule adsorbed on an anatase (101) surface, a system made of 51 atoms. In kinetics, the semiclassical transition state theory is able to account for anharmonicity and the coupling between the reactive and bound modes. Our group has developed this technique for practical applications involving the study of phenomena like kinetic isotope effect, heavy atom tunneling, and elusive conformer lifetimes. Here, we show that our multidimensional anharmonic quantum approach is able to tackle on-the-fly the thermal kinetic rate constant of a 135 degree-of-freedom system. Overall, semiclassical methods open up the possibility to describe at the quantum mechanical level systems characterized by hundreds of degrees of freedom leading to the accurate spectroscopic and kinetic description of biomolecules and complex molecular systems.
Collapse
Affiliation(s)
- Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marco Cazzaniga
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
3
|
Nunes CM, Doddipatla S, Loureiro GF, Roque JPL, Pereira NAM, Pinho e Melo TMVD, Fausto R. Differential Tunneling-Driven and Vibrationally-Induced Reactivity in Isomeric Benzazirines. Chemistry 2022; 28:e202202306. [PMID: 36066476 PMCID: PMC10092225 DOI: 10.1002/chem.202202306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 11/08/2022]
Abstract
Quantum mechanical tunneling of heavy-atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling-driven and vibrationally-induced reactivity, which constitute exceptional results for probing into the nature of these phenomena. The isomeric 6-fluoro- and 2-fluoro-4-hydroxy-2H-benzazirines (3-a and 3'-s) were generated in cryogenic krypton matrices by visible-light irradiation of the corresponding triplet nitrene 3 2-a, which was produced by UV-light irradiation of its azide precursor. The 3'-s was found to be stable under matrix dark conditions, whereas 3-a spontaneously rearranges (τ1/2 ∼64 h at 10 and 20 K) by heavy-atom tunneling to 3 2-a. Near-IR-light irradiation at the first OH stretching overtone frequencies (remote vibrational antenna) of the benzazirines induces the 3'-s ring-expansion reaction to a seven-member cyclic ketenimine, but the 3-a undergoes 2H-azirine ring-opening reaction to triplet nitrene 3 2-a. Computations demonstrate that 3-a and 3'-s have distinct reaction energy profiles, which explain the different experimental results. The spectroscopic direct measurement of the tunneling of 3-a to 3 2-a constitutes a unique example of an observation of a species reacting only by nitrogen tunneling. Moreover, the vibrationally-induced sole activation of the most favorable bond-breaking/bond-forming pathway available for 3-a and 3'-s provides pioneer results regarding the selective nature of such processes.
Collapse
Affiliation(s)
- Cláudio M. Nunes
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Srinivas Doddipatla
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - Gonçalo F. Loureiro
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | - José P. L. Roque
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| | | | | | - Rui Fausto
- University of Coimbra, CQC-IMS Department of Chemistry3004-535CoimbraPortugal
| |
Collapse
|
4
|
Schleif T. Transformations of Strained Three-Membered Rings a Common, Yet Overlooked, Motif in Heavy-Atom Tunneling Reactions. Chemistry 2022; 28:e202201775. [PMID: 35762788 PMCID: PMC9804509 DOI: 10.1002/chem.202201775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/05/2023]
Abstract
Quantum mechanical tunneling has long been recognized as an important phenomenon when considering transformations dominated by a lightweight hydrogen atom. Tunneling of heavier atoms like carbon, initially dismissed as negligible, has seen a quickly increasing number of computationally predicted and/or experimentally confirmed examples over the last decade, thus highlighting its importance for a wide variety of reactions. However, no common structural motif has been pointed out within these seemingly unconnected examples, strongly limiting the predictability of the impact of heavy-atom tunneling on a given reaction. This Concept article will provide this perspective and showcase how the recognition of the formation and cleavage of three-membered rings as common motif can inform the prediction of and research into heavy-atom tunneling reactions.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum44780BochumGermany
- Present address: Sterling Chemistry LaboratoryYale UniversityNew HavenCT 06520USA
| |
Collapse
|
5
|
Mandelli G, Aieta C, Ceotto M. Heavy Atom Tunneling in Organic Reactions at Coupled Cluster Potential Accuracy with a Parallel Implementation of Anharmonic Constant Calculations and Semiclassical Transition State Theory. J Chem Theory Comput 2022; 18:623-637. [PMID: 34995057 PMCID: PMC8830048 DOI: 10.1021/acs.jctc.1c01143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
We describe and test
on some organic reactions a parallel implementation
strategy to compute anharmonic constants, which are employed in semiclassical
transition state theory reaction rate calculations. Our software can
interface with any quantum chemistry code capable of a single point
energy estimate, and it is suitable for both minimum and transition
state geometry calculations. After testing the accuracy and comparing
the efficiency of our implementation against other software, we use
it to estimate the semiclassical transition state theory (SCTST) rate
constant of three reactions of increasing dimensionality, known as
examples of heavy atom tunneling. We show how our method is improved
in efficiency with respect to other existing implementations. In conclusion,
our approach allows SCTST rates and heavy atom tunneling at a high
level of electronic structure theory (up to CCSD(T)) to be evaluated.
This work shows how crucial the possibility to perform high level
ab initio rate evaluations can be.
Collapse
Affiliation(s)
- Giacomo Mandelli
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
6
|
Mandal N, Das A, Hajra C, Datta A. Stereoelectronic and dynamical effects dictate nitrogen inversion during valence isomerism in benzene imine. Chem Sci 2022; 13:704-712. [PMID: 35173935 PMCID: PMC8769061 DOI: 10.1039/d1sc04855d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
Non-classical processes such as heavy-atom tunneling and post transition-state dynamics govern stereoselectivity for benzene imine ⇌ 1H-azepine.
Collapse
Affiliation(s)
- Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ankita Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Chandralekha Hajra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| |
Collapse
|
7
|
Schleif T, Sander W. Photolysis and thermolysis of (iodomethyl)cyclopropane: Rapid ring opening of cyclopropylcarbinyl via heavy‐atom tunneling? J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie II Ruhr‐Universität Bochum Bochum Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II Ruhr‐Universität Bochum Bochum Germany
| |
Collapse
|
8
|
Sarkar SK, Abe M. Direct Detection of Singlet Cyclopentane-1,3-diyl Diradicals By Infrared and Ultraviolet-Visible Spectroscopy at Cryogenic Temperature and Their Photoreactivity. J Org Chem 2021; 86:12046-12053. [PMID: 34380315 DOI: 10.1021/acs.joc.1c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photolysis of a 7,7-difluoro-1,4-diphenyl-2,3-diazabicyclo[2.2.1]hept-2-ene derivative (AZ1) using a 365 nm light-emitting diode in an Ar matrix at 4 K resulted in the formation of a planar singlet 2,2-difluoro-1,3-diphenylcyclopentane-1,3-diyl diradical derivative, S-DR1-pl (λmax = 520 nm). A singlet cyclopentane-1,3-diyl diradical system (S-DR1-pl) was directly detected by steady-state infrared (IR) spectroscopy. Due to the photolability of S-DR1-pl, initial photolysis of AZ1 also yielded the ring-closed product ret-CP1 and migration products trans-MG1 and/or cis-MG1, which were observed using IR spectra. Monitoring of prolonged photolysis using IR and ultraviolet-visible (UV-vis) spectra demonstrated the formation of the allylic cation CT1 (λmax = 470 nm). On the other hand, photolysis of a 7,7-dimethoxy-1,4-diphenyl-2,3-diazabicyclo[2.2.1]hept-2-ene derivative (AZ2) yielded a puckered conformer (instead of planar) of the corresponding diradical S-DR2-puc, which was detected by IR and UV-vis spectroscopy in an Ar matrix at 4 K. This spectroscopic characterization opens a new strategy to obtain more detailed information about the structure and reactivity of singlet cyclopentane-1,3-diyl diradicals.
Collapse
Affiliation(s)
- Sujan K Sarkar
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
9
|
Kozuch S, Schleif T, Karton A. Quantum mechanical tunnelling: the missing term to achieve sub-kJ mol -1 barrier heights. Phys Chem Chem Phys 2021; 23:10888-10898. [PMID: 33908522 DOI: 10.1039/d1cp01275d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To predict barrier heights at low temperatures, it is not enough to employ highly accurate electronic structure methods. We discuss the influence of quantum tunnelling on the comparison of experimental and theoretical activation parameters (Ea, ΔH‡, ΔG‡, or ΔS‡), since the slope-based experimental techniques to obtain them completely neglect the tunnelling component. The intramolecular degenerate rearrangement of four fluxional molecules (bullvalene, barbaralane, semibullvalene, and norbornadienylidene) were considered, systems that cover the range between fast deep tunneling and small but significant shallow tunnelling correction. The barriers were computed with the composite W3lite-F12 method at the CCSDT(Q)/CBS level, and the tunnelling contribution with small curvature tunnelling. While at room temperature the effect is small (∼1 kJ mol-1), at low temperatures it can be considerable (in the order of tens of kJ mol-1 at ∼80 K).
Collapse
Affiliation(s)
- Sebastian Kozuch
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel.
| | | | | |
Collapse
|
10
|
Viegas LP, M. Nunes C, Fausto R. Spin-forbidden heavy-atom tunneling in the ring-closure of triplet cyclopentane-1,3-diyl. Phys Chem Chem Phys 2021; 23:5797-5803. [DOI: 10.1039/d1cp00076d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The putative spin-forbidden heavy-atom tunneling process for the ring closure of cyclopentane-1,3-diyl at cryogenic temperatures is confirmed with calculations employing the weak-coupling formulation of nonadiabatic transition state theory.
Collapse
Affiliation(s)
- Luís P. Viegas
- University of Coimbra
- CQC
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Cláudio M. Nunes
- University of Coimbra
- CQC
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Rui Fausto
- University of Coimbra
- CQC
- Department of Chemistry
- 3004-535 Coimbra
- Portugal
| |
Collapse
|
11
|
Kirshenboim O, Frenklah A, Kozuch S. Switch chemistry at cryogenic conditions: quantum tunnelling under electric fields. Chem Sci 2020; 12:3179-3187. [PMID: 34164085 PMCID: PMC8179409 DOI: 10.1039/d0sc06295b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
While the influence of intramolecular electric fields is a known feature in enzymes, the use of oriented external electric fields (EEF) to enhance or inhibit molecular reactivity is a promising topic still in its infancy. Herein we will explore computationally the effects that EEF can provoke in simple molecules close to the absolute zero, where quantum tunnelling (QT) is the sole mechanistic option. We studied three exemplary systems, each one with different reactivity features and known QT kinetics: π bond-shifting in pentalene, Cope rearrangement in semibullvalene, and cycloreversion of diazabicyclohexadiene. The kinetics of these cases depend both on the field strength and its direction, usually giving subtle but remarkable changes. However, for the cycloreversion, which suffers large changes on the dipole through the reaction, we also observed striking results. Between the effects caused by the EEF on the QT we observed an inversion of the Arrhenius equation, deactivation of the molecular fluxionality, and stabilization or instantaneous decomposition of the system. All these effects may well be achieved, literally, at the flick of a switch.
Collapse
Affiliation(s)
- Omer Kirshenboim
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| | - Alexander Frenklah
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| |
Collapse
|
12
|
Wang Z, Akisaka R, Yabumoto S, Nakagawa T, Hatano S, Abe M. Impact of the macrocyclic structure and dynamic solvent effect on the reactivity of a localised singlet diradicaloid with π-single bonding character. Chem Sci 2020; 12:613-625. [PMID: 34163792 PMCID: PMC8179019 DOI: 10.1039/d0sc05311b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Localised singlet diradicals are key intermediates in bond homolysis processes. Generally, these highly reactive species undergo radical–radical coupling reaction immediately after their generation. Therefore, their short-lived character hampers experimental investigations of their nature. In this study, we implemented the new concept of “stretch effect” to access a kinetically stabilised singlet diradicaloid. To this end, a macrocyclic structure was computationally designed to enable the experimental examination of a singlet diradicaloid with π-single bonding character. The kinetically stabilised diradicaloid exhibited a low carbon–carbon coupling reaction rate of 6.4 × 103 s−1 (155.9 μs), approximately 11 and 1000 times slower than those of the first generation of macrocyclic system (7.0 × 104 s−1, 14.2 μs) and the parent system lacking the macrocycle (5 × 106 s−1, 200 ns) at 293 K in benzene, respectively. In addition, a significant dynamic solvent effect was observed for the first time in intramolecular radical–radical coupling reactions in viscous solvents such as glycerin triacetate. This theoretical and experimental study demonstrates that the stretch effect and solvent viscosity play important roles in retarding the σ-bond formation process, thus enabling a thorough examination of the nature of the singlet diradicaloid and paving the way toward a deeper understanding of reactive intermediates. An extremely long-lived localised singlet diradical with π-single bonding character is found in a macrocyclic structure that retards the radical–radical coupling reaction by the “stretch and solvent-dynamic effects”.![]()
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Rikuo Akisaka
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Sohshi Yabumoto
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Tatsuo Nakagawa
- Unisoku Co., Ltd. 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Sayaka Hatano
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan .,Hiroshima University Research Centre for Photo-Drug-Delivery-Systems (HiU-P-DDS), Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|