1
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
2
|
Kang G, Strassfeld DA, Sheng T, Chen CY, Yu JQ. Transannular C-H functionalization of cycloalkane carboxylic acids. Nature 2023; 618:519-525. [PMID: 37258673 PMCID: PMC11135385 DOI: 10.1038/s41586-023-06000-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/22/2023] [Indexed: 06/02/2023]
Abstract
Cyclic organic molecules are common among natural products and pharmaceuticals1,2. In fact, the overwhelming majority of small-molecule pharmaceuticals contain at least one ring system, as they provide control over molecular shape, often increasing oral bioavailability while providing enhanced control over the activity, specificity and physical properties of drug candidates3-5. Consequently, new methods for the direct site and diastereoselective synthesis of functionalized carbocycles are highly desirable. In principle, molecular editing by C-H activation offers an ideal route to these compounds. However, the site-selective C-H functionalization of cycloalkanes remains challenging because of the strain encountered in transannular C-H palladation. Here we report that two classes of ligands-quinuclidine-pyridones (L1, L2) and sulfonamide-pyridones (L3)-enable transannular γ-methylene C-H arylation of small- to medium-sized cycloalkane carboxylic acids, with ring sizes ranging from cyclobutane to cyclooctane. Excellent γ-regioselectivity was observed in the presence of multiple β-C-H bonds. This advance marks a major step towards achieving molecular editing of saturated carbocycles: a class of scaffolds that are important in synthetic and medicinal chemistry3-5. The utility of this protocol is demonstrated by two-step formal syntheses of a series of patented biologically active small molecules, prior syntheses of which required up to 11 steps6.
Collapse
Affiliation(s)
- Guowei Kang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Tao Sheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Chia-Yu Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Aguilera EY, Liu EC, Thullen SM, Sanford MS. Transannular Functionalization of Multiple C(sp 3)-H Bonds of Tropane via an Alkene-Bridged Palladium(I) Dimer. Organometallics 2023; 42:627-631. [PMID: 38550877 PMCID: PMC10972606 DOI: 10.1021/acs.organomet.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This communication describes the Pd-catalyzed C(sp3)-H functionalization of a tropane derivative to generate products with functionalization at two (β/γ) or three (β/γ/β) different sites on the alicyclic amine core. These reactions proceed via an initial dehydrogenation to generate an alkene product that can react further to form a Pd(I) alkene-bridged dimer. Functionalization of this dimer affords β/γ/β-functionalized allylic arylation and allylic acetoxylation products.
Collapse
Affiliation(s)
- Ellen Y. Aguilera
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - En-Chih Liu
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Scott M. Thullen
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Piticari A, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Stereoselective Palladium‐Catalyzed C(
sp
3
)−H Mono‐Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Amalia‐Sofia Piticari
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Daniele Antermite
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - Joe I. Higham
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | - J. Harry Moore
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| | | | - James A. Bull
- Department of Chemistry Imperial College London Molecular Sciences Research Hub White City Campus Wood Lane London W12 0BZ UK
| |
Collapse
|
5
|
Fung AKK, Yu LJ, Sherburn MS, Coote ML. Atom Transfer Radical Polymerization-Inspired Room Temperature (sp 3)C-N Coupling. J Org Chem 2021; 86:9723-9732. [PMID: 34181425 DOI: 10.1021/acs.joc.1c01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple nonphotochemical procedure is reported for Cu(I)-catalyzed C-N coupling of aliphatic halides with amines and amides. The process is loosely based on the Goldberg reaction but takes place readily at room temperature. It uses Cu(I)Br, a commonly used and inexpensive atom transfer radical polymerization precatalyst, along with the cheap ligand N,N,N',N″,N″-pentamethyldiethylenetriamine, to activate the R-X bond of the substrate via inner-sphere electron transfer. The procedure brings about productive C-N bond formation between a range of alkyl halide substrates with heterocyclic aromatic amines and amides. The mechanism of the coupling step, which was elucidated through application of computational methods, proceeds via a unique Cu(I) → Cu(II) → Cu(III) → Cu(I) catalytic cycle, involving (a) inner-sphere electron transfer from Cu(I) to the alkyl halide to generate the alkyl radical; (b) successive coordination of the N-nucleophile and the radical to Cu(II); and finally reductive elimination. In the absence of a nucleophile, debrominative homocoupling of the alkyl halide occurs. Control experiments rule out SN-type mechanisms for C-N bond formation.
Collapse
Affiliation(s)
- Alfred K K Fung
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Li-Juan Yu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
6
|
Aguilera EY, Sanford MS. Palladium‐Mediated C
γ
−H Functionalization of Alicyclic Amines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ellen Y. Aguilera
- Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
| | - Melanie S. Sanford
- Department of Chemistry University of Michigan 930 North University Avenue Ann Arbor MI 48109 USA
| |
Collapse
|
7
|
Aguilera EY, Sanford MS. Palladium-Mediated C γ -H Functionalization of Alicyclic Amines. Angew Chem Int Ed Engl 2021; 60:11227-11230. [PMID: 33720500 DOI: 10.1002/anie.202101782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Indexed: 01/01/2023]
Abstract
This paper describes a new method for the transannular functionalization of the γ-C-H bonds in alicyclic amines to install C(sp3 )-halogen, oxygen, nitrogen, boron, and sulfur bonds. The key challenge for this transformation is controlling the relative rate of Cγ -H versus Cα -H functionalization. We demonstrate that this selectivity can be achieved by pre-complexation of the substrate with Pd prior to the addition of oxidant. This approach enables the use of diverse oxidants that ultimately install various heteroatom functional groups at the γ-position with high site- and diastereoselectivity.
Collapse
Affiliation(s)
- Ellen Y Aguilera
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Caplin MJ, Foley DJ. Emergent synthetic methods for the modular advancement of sp 3-rich fragments. Chem Sci 2021; 12:4646-4660. [PMID: 34168751 PMCID: PMC8179648 DOI: 10.1039/d1sc00161b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/28/2021] [Indexed: 12/29/2022] Open
Abstract
Fragment-based drug discovery is an important and increasingly reliable technology for the delivery of clinical candidates. Notably, however, sp3-rich fragments are a largely untapped resource in molecular discovery, in part due to the lack of general and suitably robust chemical methods available to aid their development into higher affinity lead and drug compounds. This Perspective describes the challenges associated with developing sp3-rich fragments, and succinctly highlights recent advances in C(sp3)-H functionalisations of high potential value towards advancing fragment hits by 'growing' functionalised rings and chains from unconventional, carbon-centred vectors.
Collapse
Affiliation(s)
- Max J Caplin
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| | - Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury Christchurch New Zealand
| |
Collapse
|