1
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
2
|
Chandanshive AC, Gonnade RG, Chikkali SH. Thermally Stable P-Chiral Supramolecular Phosphines, their Self-Assembly and Implication in Rh-Catalyzed Asymmetric Hydrogenation. Chemistry 2024:e202401077. [PMID: 38845585 DOI: 10.1002/chem.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 07/26/2024]
Abstract
P-chiral supramolecular phosphine ligands are crucial for asymmetric transformations, but their synthesis is tedious. We report a one-step synthesis of thermally stable P-chiral supramolecular phosphines and their performance in the asymmetric hydrogenation of functionalized alkenes. A rational designing and synthesis of (R, R)-QuinoxP* ligated palladium complex (Pd-2) in excellent yield is reported. This Pd-2 catalyzed a direct P-C coupling of 2,3-dihydro-1-H-phosphindole (A1)/1,2,3,4-tetrahydrophosphindoline (A2) with 1-(3-iodophenyl)urea (B1)/2-iodo /6-hydroxy pyridine (B2) and,produced corresponding ligands L1-L3. The P-C coupling between A1 and B2 produced 6-(2,3-dihydro-1H-phosphindol-1-yl)pyridine-2(1H)-one (L2) with an excellent enantiomeric excess of up to 99 %. L2 was found to be remarkably stable even at 150 °C and did not oxidize/hydrolyze for at least 24 hours in open air. Such thermal stability and an impediment to oxidation are unprecedented. L2 self-assembled and produced L2-C1 (Pt), L2-C2(Pd), and L2-C3(Rh) assemblies. The utility of the self-assembled P-chiral ligand was demonstrated in the Rh-catalyzed asymmetric hydrogenation (AH) of functionalized olefins. The L2-C3 catalyzed AH of functionalized alkenes and delivered chiral products with excellent enantioselectivity of >99 %. A small library of 16 substrates was subjected to AH using L2-C3 to produce chiral compounds with excellent conversion and ee.
Collapse
Affiliation(s)
- Amol C Chandanshive
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, U. P. 201002, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, U. P. 201002, India
- Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Samir H Chikkali
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, U. P. 201002, India
| |
Collapse
|
3
|
Huber T, Bauer JO. A Powerful P-N Connection: Preparative Approaches, Reactivity, and Applications of P-Stereogenic Aminophosphines. Chemistry 2023:e202303760. [PMID: 38055219 DOI: 10.1002/chem.202303760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
For more than five decades, P-stereogenic aminophosphine chalcogenides and boranes have attracted scientific attention and are still in the focus of ongoing research. In the last years, novel transition metal-based synthesis methods have been discovered, in addition to the long-known use of chiral auxiliaries. Enantiomerically pure compounds with N-P+ -X- (X=O, S, BH3 ) motifs served as valuable reactive building blocks to provide new classes of organophosphorus derivatives, thereby preserving the stereochemical information at the phosphorus atom. Over the years, intriguing applications in organocatalysis and transition metal catalysis have been reported for some representatives. Asymmetric reductions of C=C, C=N, and C=O double bonds were feasible with selected P-stereogenic aminophosphine oxides in the presence of hydrogen transfer reagents. P-stereogenic aminophosphine boranes could be easily deprotected and used as ligands for various transition metals to enable catalytic asymmetric hydrogenations of olefins and imines. This review traces the emergence of a synthetically and catalytically powerful functional compound class with phosphorus-centered chirality in its main lines, starting from classical approaches to modern synthesis methods to current applications.
Collapse
Affiliation(s)
- Tanja Huber
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Jonathan O Bauer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| |
Collapse
|
4
|
Ramazanova K, Chakrabortty S, Müller BH, Lönnecke P, de Vries JG, Hey-Hawkins E. Synthesis of P-stereogenic 1-phosphanorbornane-derived phosphine-phosphite ligands and application in asymmetric catalysis. RSC Adv 2023; 13:34439-34444. [PMID: 38024987 PMCID: PMC10667963 DOI: 10.1039/d3ra07630j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
A convenient synthesis of enantiopure mixed donor phosphine-phosphite ligands has been developed incorporating P-stereogenic phosphanorbornane and axially chiral bisnaphthols into one ligand structure. The ligands were applied in Pd-catalyzed asymmetric allylic substitution of diphenylallyl acetate, Rh-catalyzed asymmetric hydroformylation of styrene and Rh-catalyzed asymmetric hydrogenation of an acetylated dehydroamino ester. Excellent branched selectivity was observed in the hydroformylation although low ee was found. Moderate ee's of up to 60% in allylic substitution and 50% in hydrogenation were obtained using bisnaphthol-derived ligands.
Collapse
Affiliation(s)
- Kyzgaldak Ramazanova
- Institute of Inorganic Chemistry, Universität Leipzig Johannisallee 29 D-04103 Leipzig Germany
| | | | - Bernd H Müller
- Leibniz Institute for Catalysis e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Universität Leipzig Johannisallee 29 D-04103 Leipzig Germany
| | - Johannes G de Vries
- Leibniz Institute for Catalysis e.V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Universität Leipzig Johannisallee 29 D-04103 Leipzig Germany
| |
Collapse
|
5
|
Siewert JE, Puerta Lombardi BM, Jannsen N, Roesler R, Hering-Junghans C. Synthesis and Ligand Properties of Chelating Bis( N-heterocyclic carbene)-Stabilized Bis(phosphinidenes). Inorg Chem 2023; 62:16832-16841. [PMID: 37782848 DOI: 10.1021/acs.inorgchem.3c02264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
NHC-phosphinidene (NHCP) adducts are an emerging class of ligands with proven binding ability for main group and transition metal elements. They possess electron-rich P atoms with two lone pairs (LPs) of electrons, making them interesting platforms for the formation of multimetallic complexes. We describe herein a modular, high-yielding synthesis of bis(NHCP)s, starting from alkylidene-bridged bis(NHC)s ((IMe)2CnH2n; n = 1,3) and triphosphirane (PDip)3 (Dip = 2,6-iPr2C6H3) as phosphinidene transfer reagent. The coordination chemistry of [{DipP(IMe)}2CH2], 1, was studied in detail, and complexes [1·FeBr2] and [1·Rh(cod)]Cl were prepared, showing that the ligand has a flexible bite angle. The dicarbonyl complex [1·Rh(CO)2]Cl, with an average value for the CO stretching frequency of 2029 cm-1, indicates a strongly donating ligand when compared to related complexes. The binding ability of the remaining two phosphorus LPs was demonstrated with AuCl(SMe2), giving the heterotrimetallic complex [1·(AuCl)2·Rh(cod)]Cl. Moreover, [1·Rh(cod)]X (X- = Cl, B(3,5-(CF3)2-C6H3)4) was tested in the catalytic hydrogenation of methyl-Z-α-acetamidocinnamate (MAC) and dimethyl itaconate (ItMe2), revealing that the chloride complex was inactive, while the BArF complex demonstrated moderate activity. Additionally, [1·Rh(cod)]Cl was shown to be moderately air- and moisture-stable, slowly decomposing to the corresponding NHC-stabilized bis-dioxophosphorane, which was independently synthesized by treating the free ligand with dry O2.
Collapse
Affiliation(s)
- Jan-Erik Siewert
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Braulio M Puerta Lombardi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Nora Jannsen
- Leibniz-Institut für Katalyse (LIKAT), Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Roland Roesler
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
6
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
7
|
Chakrabortty S, Konieczny K, Müller BH, Spannenberg A, Kamer PCJ, de Vries JG. Betti base derived P-stereogenic phosphine-diamidophosphite ligands with a single atom spacer and their application in asymmetric catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02017j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small bite-angle P-chirogenic PNP ligands have been synthesized stereo-selectively and employed in Rh-catalyzed asymmetric hydrogenation and Pd-catalyzed asymmetric allylic substitution resulting in moderate to excellent enantioselectivities.
Collapse
Affiliation(s)
| | - Katharina Konieczny
- Leibniz−Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Bernd H. Müller
- Leibniz−Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz−Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Paul C. J. Kamer
- Leibniz−Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Johannes G. de Vries
- Leibniz−Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|