1
|
Fouda A, Negi S, Zaremba O, Gaidar RS, Moroz YS, Rusanov E, Paraskevas S, Tchervenkov J. Discovery, Synthesis, and In Vitro Characterization of 2,3 Derivatives of 4,5,6,7-Tetrahydro-Benzothiophene as Potent Modulators of Retinoic Acid Receptor-Related Orphan Receptor γt. J Med Chem 2023; 66:7355-7373. [PMID: 37172324 PMCID: PMC10259452 DOI: 10.1021/acs.jmedchem.3c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/14/2023]
Abstract
Retinoic acid receptor-related orphan receptor γt (RORγt) is a nuclear receptor that is expressed in a variety of tissues and is a potential drug target for the treatment of inflammatory and auto-immune diseases, metabolic diseases, and resistant cancer types. We herein report the discovery of 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene modulators of RORγt. We also report the solubility in acidic/neutral pH, mouse/human/dog/rat microsomal stability, Caco-2, and MDR1-MDCKII permeabilities of a set of these derivatives. For this group of modulators, inverse agonism by steric clashes and push-pull mechanisms induce greater instability to protein conformation compared to agonist lock hydration. Independent of the two mechanisms, we observed a basal modulatory activity of the tested 2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene toward RORγt due to the interactions with the Cys320-Glu326 and Arg364-Phe377 hydrophilic regions. The drug discovery approach reported in the current study can be employed to discover modulators of nuclear receptors and other globular protein targets.
Collapse
Affiliation(s)
- Ahmed Fouda
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | - Sarita Negi
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
| | | | | | - Yurii S. Moroz
- Chemspace
LLC, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyïv, Kyïv 01601, Ukraine
| | - Eduard Rusanov
- Institute
of Organic Chemistry, National Academy of
Sciences of Ukraine, Kyïv 02094, Ukraine
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
| | - Steven Paraskevas
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| | - Jean Tchervenkov
- Department
of Experimental Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- Research
Institute of the McGill University Health Centre, Montréal, Québec H3H 2R9, Canada
- Department
of Surgery, McGill University, Montréal, Québec H3G 1A4, Canada
- McGill
University Health Centre, Montréal, Québec H4A 3J1, Canada
| |
Collapse
|
2
|
Wu P, Zhang Y, Cheng Y. Sequential Ag(I) Salt and Chiral N-Heterocyclic Carbene Catalysis Enables Enantioselective and Diastereoselective Construction of Complex Heterocyclic Molecules and the Switch of Stereoselectivity. J Org Chem 2022; 87:2779-2796. [PMID: 35041426 DOI: 10.1021/acs.joc.1c02703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic reactions under cascade catalysis provide a powerful strategy to construct molecules of complexed structures. Reported herein is the sequential silver(I) salt and chiral N-heterocyclic carbene (NHC) catalyzed enantioselective and diastereoselective synthesis of a diversity of unprecedented fused heterocyclic compounds from the reactions of readily available N'-((2-alkynyl-3-pyridinyl)methylene)hydrazides with 2-aroylvinylcinnamaldehydes. Both reaction pathways and stereoselectivity were steered conveniently and efficiently by the employment of different NHCs and bases, enabling the selective preparation of pentacyclic ring-fused 1,6-naphthyridine derivatives and 1,6-naphthyridine-substituted tricyclic products in moderated to good yields with high enantioselectivity and diastereoselectivity. Mechanisms accounting for the selective transformations, especially the effect of base and chiral NHC catalyst on the reaction course and stereochemistry of products, were also discussed.
Collapse
Affiliation(s)
- Pei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yue Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ying Cheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Amide-based xanthine oxidase inhibitors bearing an N-(1-alkyl-3-cyano-1H-indol-5-yl) moiety: Design, synthesis and structure-activity relationship investigation. Bioorg Chem 2021; 117:105417. [PMID: 34673452 DOI: 10.1016/j.bioorg.2021.105417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Our previous work identified a promising isonicotinamide based xanthine oxidase (XO) inhibitor, N-(3-cyano-4-((2-cyanobenzyl)oxy)phenyl)isonicotinamide (1), and concluded that amide is an effective linker in exploring the XO inhibitor chemical space that is completely different from the five-membered ring framework of febuxostat and topiroxostat. Indole, an endogenous bioactive substance and a popular drug construction fragment, was involved in the structural optimization campaign of the present effort. After the installation of some functional groups, N-(1-alkyl-3-cyano-1H-indol-5-yl) was generated and employed to mend the missing H-bond interaction between the 3'-cyano of 1 and Asn768 residue of XO by shortening their distance. In this context, eight kinds of heterocyclic aromatic amide chemotypes were rationally designed and synthesized to investigate the structure-activity relationship (SAR) of amide-based XO inhibitors. The optimized compound a6 (IC50 = 0.018 μM) exhibits 17.2-fold improved potency than the initial compound 1 (IC50 = 0.31 μM). Its potency is comparable to that of topiroxostat (IC50 = 0.013 μM). Molecular docking and molecular dynamics studies proved the existence of the stable H-bond between the cyano group and the Asn768 residue. Moreover, oral administration of a6 (11.8 mg/kg) could effectively reduce serum uric acid levels in an acute hyperuricemia rat model. Liver microsomal stability assay illustrated that compound a6 possesses well metabolic stability in rat liver microsomes. However, the in vivo potency of a6 was much lower than that of topiroxostat, which may be explained by the poor absorption found in the parallel artificial membrane permeability assay (PAMPA). In addition, 6a has non-cytotoxicity against normal cell lines MCF10A and 16HBE. Taken together, this work culminated in the identification of compound 6a as an excellent lead for further exploration of amide-based XO inhibitors.
Collapse
|