1
|
Parsons LWT, Berben LA. Metallated dihydropyridinates: prospects in hydride transfer and (electro)catalysis. Chem Sci 2023; 14:8234-8248. [PMID: 37564402 PMCID: PMC10411630 DOI: 10.1039/d3sc02080k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Hydride transfer (HT) is a fundamental step in a wide range of reaction pathways, including those mediated by dihydropyridinates (DHP-s). Coordination of ions directly to the pyridine ring or functional groups stemming therefrom, provides a powerful approach for influencing the electronic structure and in turn HT chemistry. Much of the work in this area is inspired by the chemistry of bioinorganic systems including NADH. Coordination of metal ions to pyridines lowers the electron density in the pyridine ring and lowers the reduction potential: lower-energy reactions and enhanced selectivity are two outcomes from these modifications. Herein, we discuss approaches for the preparation of DHP-metal complexes and selected examples of their reactivity. We suggest further areas in which these metallated DHP-s could be developed and applied in synthesis and catalysis.
Collapse
Affiliation(s)
- Leo W T Parsons
- Department of Chemistry, University of California Davis CA 95616 USA
| | - Louise A Berben
- Department of Chemistry, University of California Davis CA 95616 USA
| |
Collapse
|
2
|
Yu CH, Hung CH, Wang TH, Ong TG. Selective C–H activation of pyridine via Ni–Al. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Liu D, Xu Z, Lu X, Yu H, Fu Y. Linear Regression Model for Predicting Allyl Alcohol C–O Bond Activity under Palladium Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- DeGuang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - ZheYuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - Xi Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| | - HaiZhu Yu
- Department of Chemistry, Center for Atomic Engineering of Advanced Materials, Anhui Provence Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei230601, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
4
|
Ma JB, Zhao X, Zhang D, Shi SL. Enantio- and Regioselective Ni-Catalyzed para-C-H Alkylation of Pyridines with Styrenes via Intermolecular Hydroarylation. J Am Chem Soc 2022; 144:13643-13651. [PMID: 35857884 DOI: 10.1021/jacs.2c04043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct asymmetric functionalization of the pyridyl C-H bond represents a longstanding challenge in organic chemistry. We herein describe the first enantioselective para-C-H activation of pyridines through the use of a Ni-Al bimetallic catalyst system and N-heterocyclic carbene (NHC) ligand for intermolecular hydroarylation of styrenes. The reaction procceds in high to excellent enantioselectivities (up to 98.5:1.5 er) and high site-selectivities for both styrene and pyridine components (up to >98:2). Consequently, a broad range of enantioenriched 1,1-diarylalkanes containing pyridine moieties could be prepared in a single step with 100% atom economy. Computational studies supported a mechanism involving a ligand-to-ligand H-transfer (LLHT) and reductive elimination sequence, with LLHT being the rate- and enantioselectivity-determining step. DFT studies indicate that the π-π stacking interaction between the NHC aryl fragment and trans-styrenes is critical for high reactivity and enantiocontrol.
Collapse
Affiliation(s)
- Jun-Bao Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xia Zhao
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
5
|
Gao H, Hu L, Hu Y, Lv X, Wu YB, Lu G. Origins of regioselectivity in Ni-catalyzed hydrofunctionalization of alkenes via ligand-to-ligand hydrogen transfer mechanism. Chem Commun (Camb) 2022; 58:8650-8653. [PMID: 35822288 DOI: 10.1039/d2cc02691k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origins of regioselectivity in Ni-catalyzed alkene hydrofunctionalizations were computationally investigated by using energy decomposition analysis. The results indicate the Markovnikov selectivity with aryl-substituted alkenes is favored due to the stabilizing charge transfer effect, and the anti-Markovnikov selectivity with alkyl-substituted alkenes is favored because of the destabilizing Pauli repulsion effect.
Collapse
Affiliation(s)
- Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, China.
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, China.
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, China.
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, China.
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
6
|
Chen XM, Li BW, Wang MY, Liu JY. Theoretical study on the mechanism of Ni−Al bimetallic catalyzed dual C−H cyclization of amides and alkynes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Bera A, Kabadwal LM, Bera S, Banerjee D. Recent advances on non-precious metal-catalyzed C-H functionalization of N-heteroarenes. Chem Commun (Camb) 2021; 58:10-28. [PMID: 34874036 DOI: 10.1039/d1cc05899a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-Heteroarenes are widely used for numerous medicinal applications, lifesaving drugs and show utmost importance as intermediates in chemical synthesis. This feature article highlights the recent advances, from 2015 to August 2021, on sp2 and sp3 C-H bond functionalization reactions of various N-heteroarenes catalyzed by non-precious transition metals (Mn, Co, Fe, Ni, etc.). The salient features of the report are: (i) the development of newer catalysis for Csp2-H activation of N-heteroarenes and categorized into alkylation, alkenylation, borylation, cyanation, and annulation reactions, (ii) recent advances on Csp3-H bond functionalization of N-heteroarenes considering newer approaches for alkylation as well as alkenylation processes, and (iii) synthetic applications and practical utility of the catalytic protocols utilized for late-stage drug development; (iv) scope for the development of newer catalytic protocols along with mechanistic studies and detail mechanistic findings of various important processes.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|