1
|
Pathak S, Singh AP, Sharma R, Pandey R. An Overview of the Pharmacological Activities and Synthesis of Benzothiophene Derivatives. Med Chem 2024; 20:839-854. [PMID: 38920062 DOI: 10.2174/0115734064315107240603055845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
One important class of organic compounds having many uses, especially in medical chemistry, is benzothiophene and its derivatives. This review examines the biological activity of benzothiophene derivatives and summarizes the synthetic methods used in their production. The effectiveness of several synthetic pathways, such as cyclization techniques, functional group modifications, and reactions catalyzed by transition metals, in gaining access to benzothiophene scaffolds has been examined. Additionally, a broad spectrum of therapeutic domains, such as antiinflammatory, antibacterial, antidiabetic, anticancer, antimicrobial, anti-leishmanial, antifungal, antimalarial, and antitubercular activities, are covered by the pharmacological activities that are being explored. The synthesis and pharmacological potential of benzothiophene derivatives are well-explained in this thorough review, which opens up new options for medicinal chemistry and drug discovery study. Overall, this study is a useful resource for scientists working on drug development and discovery as it sheds light on the pharmacological potential of benzothiophene derivatives. This review includes the synthesis and bioactivities of the years 2002-2024. The goal of this review is to compile the existing information on benzothiophene derivatives and provide guidance for future research and development as well as insights into their possible medicinal uses.
Collapse
Affiliation(s)
- Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Ansh Pratap Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Richa Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rahul Pandey
- Department of Management, Dr. D. Y. Patil Arts, Commerce & Science College, Pune, India
| |
Collapse
|
2
|
Liu B, Deng Q, Zhang L, Yu A, Meng X. Switchable C2/C3 positional selectivity of thioisatins in a three-component domino reaction: combined computational and experimental studies. Org Biomol Chem 2022; 20:9639-9644. [PMID: 36411991 DOI: 10.1039/d2ob01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nucleophile-induced domino reaction is a featured reactivity mode of thioisatin, but the C2/C3 positional selectivity towards a nucleophile has not been understood in-depth. In this work, a domino reaction of thioisatin with bromoacetophenone and tryptamine hydrochloride to produce a benzothiophene-fused eight-membered N-heterocycle was described, showing that the Brønsted acid-base form of the amine partner was crucial for the selectivity, because using tryptamine instead of tryptamine hydrochloride gave a different product. Control experiments and density functional calculations revealed that the domino reaction using tryptamine or tryptamine hydrochloride was triggered by a condensation reaction at the C2 or C3 position of thioisatin, respectively. A delicate balance between local electrophilicity and polarization effect may be responsible for the observed selectivity.
Collapse
Affiliation(s)
- Baolin Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science Tianjin Chengjian University, Tianjin 300384, P.R. China.
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
3
|
Huang J, Wang W, Zhang L, Meng X. Recent advances in the synthesis of benzo[b]thiophene fused polycyclic derivatives: strategies and reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Deng Q, Gu J, Zhang H, Zhang Y, Meng X. Sustainable access to benzothiophene derivatives bearing a trifluoromethyl group via a three-component domino reaction in water. Org Biomol Chem 2022; 20:7424-7428. [PMID: 35822661 DOI: 10.1039/d2ob01034h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A catalyst-free three-component domino reaction was developed for the synthesis of benzothiophene fused pyrrolidones bearing a CF3 group for the first time. The notable advantages of this strategy over the existing methods include the use of water as a solvent at room temperature, transition metal-free conditions, a broad substrate scope, and easy scale-up synthesis. More importantly, the benzothiophene derivatives have been found to show potent anticancer activities using the Cell Counting Kit-8 (CCK-8) assay.
Collapse
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Jun Gu
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, NO.1399 Shichang West Road, Suzhou 215228, China
| | - Huan Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Youlai Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China.
| |
Collapse
|
5
|
Singh M, Jamra. R, Paul AK, Malakar CC, Singh V. KI‐assisted Sulfur Activation/Insertion/Denitration Strategy towards Dual C−S Bond Formation for One‐pot Synthesis of β‐Carboline‐tethered 2‐Acylbenzothiophenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
| | - Rahul Jamra.
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab Bathinda 151401 Punjab India
| | - Avijit K. Paul
- Department of Chemistry National Institute of Technology Kurukshetra 136119 Haryana India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Imphal 795004 Manipur India
| | - Virender Singh
- Department of Chemistry Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar 144011 Punjab India
- Department of Chemistry Central University of Punjab Bathinda 151401 Punjab India
| |
Collapse
|
6
|
Deng Q, Yu A, Zhang L, Meng X. Divergent Construction of Benzothiophene-Fused N-Heterocycles via Stereotunable Three-Component Domino Reactions. J Org Chem 2021; 86:3860-3870. [PMID: 33593054 DOI: 10.1021/acs.joc.0c02692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A stereotunable three-component domino strategy among thioisatin, 2-bromo-1-phenylethan-1-one, and cyclohexane-1,2-diamine under catalyst-free conditions was disclosed. A wide range of benzothiophene-fused polycycles and eight-membered N-heterocycles were synthesized by regulating the stereoconfiguration of cyclohexane-1,2-diamines. The detailed mechanism and the origin of the chemoselectivity were explored by density functional calculations. Analysis of the geometrical structures of key transition states revealed that the existence of favorable intramolecular attractions, and the steric effect governed the chemoselectivity observed.
Collapse
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| |
Collapse
|
7
|
Shen J, Zhang L, Meng X. Recent advances in cyclization reactions of isatins or thioisatins via C–N or C–S bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes recent developments on cyclization reactions induced by the C–N or C–S bond cleavage of isatins or thioisatins in the last 5 years, which produce fused products instead of spiro compounds.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
8
|
Deng Q, Yu A, Zhang S, Meng X. Tunable synthesis of benzothiophene fused pyranone and thiochromen fused furan derivatives via a domino process. Org Chem Front 2021. [DOI: 10.1039/d0qo01269f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A K2CO3-promoted tunable domino reaction between thioisatins and α-bromoketones was developed for the synthesis of benzothiophene fused pyranone and thiochromen fused furan derivatives via adjusting MgSO4.
Collapse
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Shunguang Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
9
|
Deng Q, Yu A, Li M, Meng X. Amine‐Mediated Domino Reaction of Thioisatins: Synthesis of Benzothiophene‐fused N‐Heterocycles under Catalyst‐Free Conditions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Meitong Li
- School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| |
Collapse
|
10
|
Deng Q, Yu A, Zhang L, Meng X. Selective Synthesis of Benzothiophene‐Fused Polycyclic, Eight‐Membered N‐Heterocycles via Amine‐Mediated Three‐Component Domino Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science, Tianjin Chengjian University Tianjin 300384 People's Republic of China
- College of Chemistry Beijing Normal University Beijing 100875 People's Republic of China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| |
Collapse
|