1
|
Yao M, Dong S, Xu X. Asymmetric Carbene Transformations for the Construction of All-Carbon Quaternary Centers. Chemistry 2024; 30:e202304299. [PMID: 38366703 DOI: 10.1002/chem.202304299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Asymmetric catalytic carbene reactions have been well documented in the last few decades for the expeditious assembly of chiral molecules with structural diversity. However, the enantioselective construction of all-carbon quaternary centers remains a challenge in this area. In this review article, two types of asymmetric carbene reactions that beyond cyclopropanation, cyclopropenation, and Büchner reaction, have been summarized for the construction of all-carbon quaternary centers: 1) using carbene species as a 1C synthon that reacts with a trisubstituted prochiral center; 2) sequential installation of two different C-C bonds on the carbene position, which features a gem-difunctionalization reaction. Especially, the asymmetric metal carbene gem-dialkylation process, which has emerged as a practical and versatile method for the expeditious assembly of complex architectures from readily available chemical resources, is a complementary approach for the expeditious assembly of all-carbon quaternary centers.
Collapse
Affiliation(s)
- Minghan Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Luo X, Xu MM, Xu XP, Ji SJ. NBS-induced intramolecular annulation reactions for the divergent synthesis of fused- and spirocyclic indolines. Chem Commun (Camb) 2023; 59:6576-6579. [PMID: 37183546 DOI: 10.1039/d3cc01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An NBS-induced intramolecular annulation of 3-(1H-indol-3-yl)-N-alkoxypropanamide is described. The reactions proceed well and quickly under mild conditions with the help of a base. It was found that C2-substituents on the indole ring in 3-(1H-indol-3-yl)-N-alkoxypropanamide have a great influence upon the reaction. By using C2-methyl- and C2-phenyl-3-(1H-indol-3-yl)-N-alkoxypropanamide as templates, practical protocols for the divergent synthesis of fused- and spirocyclic indoline compounds were studied and established.
Collapse
Affiliation(s)
- Xian Luo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Innovation Center for Chemical Science, Soochow University, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
3
|
Yasui M, Ohbu H, Ishikawa M, Yoshida T, Takeda N, Hirao S, Abe T, Ueda M. Synthesis of Spiro[indole-3,3'-pyrrolidine]-2'-(thi)ones. J Org Chem 2023; 88:1093-1106. [PMID: 36576873 DOI: 10.1021/acs.joc.2c02561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spiro[indole-3,3'-pyrrolidine]-2'-ones were synthesized via one-pot chloroformylation-dearomatizing spirocyclization of tryptamine derivatives. Moreover, the "thio" equivalent spiro[indole-3,3'-pyrrolidine]-2'-thiones, for which the synthesis and properties were previously unreported, were synthesized. The procedures are easily implemented, have a broad scope, and are transition-metal-free and cheap. To demonstrate the utility of the synthetic methodology, the spiro[indole-3,3'-pyrrolidine]-2'-ones were converted into heterocyclic scaffolds, such as an optically active spiroindoline and spirooxindole.
Collapse
Affiliation(s)
- Motohiro Yasui
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Haruna Ohbu
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Maho Ishikawa
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Tatsuhito Yoshida
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Norihiko Takeda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| | - Seiya Hirao
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masafumi Ueda
- Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
4
|
Zhang X, Li L, Sivaguru P, Zanoni G, Bi X. Highly electrophilic silver carbenes. Chem Commun (Camb) 2022; 58:13699-13715. [PMID: 36453127 DOI: 10.1039/d2cc04845k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catalytic carbene transfer reactions are fundamental transformations in modern organic synthesis, which enable direct access to diverse structurally complex molecules. Despite diazo precursors playing a crucial role in catalytic carbene transfer reactions, most reported methodologies take into account only diazoacetates or related compounds. This is primarily because diazoalkanes, unless they contain a resonance stabilizing group, are more susceptible to violent exothermic decomposition. In this feature article, we present an alternative approach to carbene-transfer reactions based on the formation of highly electrophilic silver carbenes from N-sulfonylhydrazones, where the high electrophilicity of silver carbenes stems from the weak interaction between silver and the carbenic carbon. These precursors are readily accessible, stable, and environmentally sustainable. Using the strategy that employs highly electrophilic silver carbenes, it is possible to develop novel intermolecular transformations involving non-stabilized carbenes, including C(sp3)-H insertion, C(sp3)-C(O) insertion, cycloaddition, and defluorinative functionalization. The silver-catalyzed carbene transfer reactions described here have high efficiency, unusual reactivity, exceptional selectivity, and a reaction pathway that differs from typical transition metal-catalyzed reactions. Our research provided fundamental insight into silver carbene chemistry, and we hope to apply this mode of catalysis to other more general transformations, including asymmetric transformations.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Linxuan Li
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Paramasivam Sivaguru
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 5268 Renmin Street, 130024, Changchun, P. R. China.
| |
Collapse
|
5
|
Ito T, Harada S, Homma H, Okabe A, Nemoto T. Mechanistic Investigation on Dearomative Spirocyclization of Arenes with α-Diazoamide under Boron Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Okabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
6
|
Song Q, Wu J, Tzoukras NV, Wu Y, Nolan SP. Theoretical study on the mechanism, chemo- and enantioselectivity of the Ag- vs. Rh-catalyzed intramolecular carbene transfer reaction of diazoacetamides. RSC Adv 2022; 12:18197-18208. [PMID: 35800305 PMCID: PMC9214843 DOI: 10.1039/d2ra01298g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
To explore the mechanism of silver and rhodium catalysis and reveal the origin of the chemo- and enantioselectivity of the reaction, density functional theory calculations were performed on the first silver-catalyzed highly enantioselective carbene transfer reaction. The calculation results reveal that when silver is used as a catalyst, due to the participation of the phosphate anion in the transition state, the enhanced nucleophilicity of the α-diazoacetamide unit promotes smooth dearomatization before generation of the silver carbene. Because the generated rhodium carbene has stronger electrophilicity, typical carbene reactions (C-H insertion and the Büchner reaction) are favored. In addition, in the process of silver catalyzed dearomatization, the formation of an R-type transition state is determined by the small torsion energy and strong interaction energy.
Collapse
Affiliation(s)
- Qingmin Song
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Jiayi Wu
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Nikolaos V Tzoukras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 Ghent 9000 Belgium
| | - Yong Wu
- Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 Ghent 9000 Belgium
| |
Collapse
|
7
|
Ito T, Ueda J, Harada S, Nemoto T. Development of Selective Molecular Transformations Based on Unique Chemical Properties of Silver Catalyst: A Theoretical Analysis and Experimental Verification. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|
8
|
Salah K, Blanco‐López E, Sirvent A, Behloul C, Nájera C, De Gracia Retamosa M, Sansano JM, Yus M, Foubelo F. Stereoselective Synthesis of Biheterocycles Containing Indole and 5,6‐Dihydropyridin‐2(1H)‐one or α‐Methylene‐β‐butyrolactam Scaffolds. ChemistrySelect 2022. [DOI: 10.1002/slct.202104245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kennouche Salah
- Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique Université Frères Mentouri-Constantine 1 25000 Constantine Algeria
| | - Ester Blanco‐López
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Ana Sirvent
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Cherif Behloul
- Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique Université Frères Mentouri-Constantine 1 25000 Constantine Algeria
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - M. De Gracia Retamosa
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - José M. Sansano
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| | - Francisco Foubelo
- Departamento de Química Orgánica - Facultad de Ciencias and Instituto de Síntesis Orgánica Universidad de Alicante Apdo. Ciudad de México, 99 03080 Alicante Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) Universidad de Alicante Apdo. 99 03080 Alicante Spain
| |
Collapse
|
9
|
Molnár Á. Stereoselective Synthesis of Azacycles Induced by Group 8–11 Late Transition Metals. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
10
|
Harada S. Development of Novel Methodology Using Diazo Compounds and Metal Catalysts. Chem Pharm Bull (Tokyo) 2021; 69:1170-1178. [PMID: 34853283 DOI: 10.1248/cpb.c21-00757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability to control the reactions of highly active chemical species to enable straightforward synthesis of valuable compounds such as bioactive natural products and pharmaceuticals is a continuing challenge in synthetic organic chemistry. This review describes the development of a methodology using reactive metal-carbene species and its synthetic application in our laboratory. First, regioselective synthesis of γ-amino acid equivalents to take advantage of their metal-dependent reactivities and the mechanistic rationale are presented. Chemoselective and enantioselective dearomatization reactions of several arenes with silver-carbene are also discussed. In the second half of the review, we discuss a carbene-insertion reaction into an amide and urea C-N bond for the assembly of nitrogen-bridged cyclic molecules.
Collapse
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
11
|
Ueda J, Harada S, Kobayashi M, Yanagawa M, Nemoto T. Maleic Acid/Thiourea‐Catalyzed Dearomative
ipso
‐Friedel–Crafts Reaction of Indoles to Produce Functionalized Spiroindolenines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jun Ueda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mayu Kobayashi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mai Yanagawa
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1, Inohana, Chuo-ku Chiba 260-8675 Japan
- Molecular Chirality Research Center Chiba University 1-33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
12
|
Affiliation(s)
- Xihe Bi
- Department of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 P.R. China
| | - Chao‐Jun Li
- Department of Chemistry McGill University 801 Sherbrooke Street West Montreal QC H3A 0B4 Canada
| |
Collapse
|
13
|
Liu SJ, Mao Q, Zhan G, Qin R, Chen BH, Xue J, Luo ML, Zhao Q, Han B. Stereoselective synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactam through the organocatalytic cascade reaction of 3-((2,2,2-trifluoroethyl)amino)indolin-2-one. Org Biomol Chem 2021; 19:467-475. [PMID: 33347527 DOI: 10.1039/d0ob02166k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly designed 3-((2,2,2-trifluoroethyl)amino)indolin-2-ones were used for the facile synthesis of chiral fluoroalkyl-containing 3,2'-spirooxindole γ-lactam products. The secondary amine-catalysed Michael/hemiaminalization cascade reaction of 3-((2,2,2-trifluoroethyl)amino)indolin-2-one with α,β-unsaturated aldehydes followed by oxidation can easily produce the desired products in high yields (up to 86%) with excellent enantioselectivities (up to 99% ee) and diastereoselectivities (up to >95 : 5 dr).
Collapse
Affiliation(s)
- Shuai-Jiang Liu
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qing Mao
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu Zhan
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Rui Qin
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ben-Hong Chen
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Xue
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Meng-Lan Luo
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qian Zhao
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- School of Basic Medical Sciences, School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
14
|
Ito T, Harada S, Homma H, Takenaka H, Hirose S, Nemoto T. Asymmetric Intramolecular Dearomatization of Nonactivated Arenes with Ynamides for Rapid Assembly of Fused Ring System under Silver Catalysis. J Am Chem Soc 2021; 143:604-611. [PMID: 33382259 DOI: 10.1021/jacs.0c10682] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Arene dearomatization is a straightforward method for converting an aromatic feedstock into functionalized carbocycles. Enantioselective dearomatizations of chemically inert arenes, however, are quite limited and underexplored relative to those of phenols and indoles. We developed a method for diazo-free generation of silver-carbene species from an ynamide and applied it to the dearomatization of nonactivated arenes. Transiently generated norcaradiene could be trapped by intermolecular [4 + 2] cycloaddition, synthesizing polycycles with five consecutive stereogenic centers. This protocol constitutes the first highly enantioselective reaction based on the diazo-free generation of silver-carbene species. Mechanistic investigations revealed a dearomatization followed by two different classes of pericyclic reactions, as well as the origin of the chemo- and enantioselectivity.
Collapse
Affiliation(s)
- Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroki Takenaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shumpei Hirose
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
15
|
Harada S, Kobayashi M, Kono M, Nemoto T. Site-Selective and Chemoselective C–H Functionalization for the Synthesis of Spiroaminals via a Silver-Catalyzed Nitrene Transfer Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masato Kono
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
16
|
Homma H, Harada S, Ito T, Kanda A, Nemoto T. Atypical Dearomative Spirocyclization of β-Naphthols with Diazoacetamides Using a Silver Catalyst. Org Lett 2020; 22:8132-8138. [PMID: 33026816 DOI: 10.1021/acs.orglett.0c03110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A chemoselective dearomatization of the less reactive benzenoid unit in β-naphthol was developed. Spirocyclization with a reductant constructs a pivotal structure for drug candidates. One-pot oxidative conversion enabled the tandem dearomatization of β-naphthol, producing conjugated tetraenone variants. The potential utility of the product as an F--selective anion sensor was also demonstrated. Theoretical studies revealed the intermediacy of silver-carbenoid species leading to chemoselective spirocyclization over arene cyclopropanation.
Collapse
Affiliation(s)
- Haruka Homma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tsubasa Ito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayaka Kanda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|