1
|
Jeong T, Okanishi Y, Yotsui S, Kim IS, Yoshimitsu T. Organic redox cascade cyclization of 2-alkynylquinones by ascorbic acid in combination with a copper catalyst and its application to formal synthesis of liphagal. NEW J CHEM 2023. [DOI: 10.1039/d2nj05724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The combination of a quinone-ascorbic acid organic redox reaction and a concomitant copper catalysis in situ enables new approach to hydroxybenzofurans with structural variations.
Collapse
Affiliation(s)
- Taejoo Jeong
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yusuke Okanishi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sora Yotsui
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
2
|
Chen C, Ding J, Liu L, Huang Y, Zhu B. Palladium‐Catalyzed Domino Cyclization/Phosphorylation of
gem
‐Dibromoolefins with P(O)H Compounds: Synthesis of Phosphorylated Heteroaromatics. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387, People's Republic of China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387, People's Republic of China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387, People's Republic of China
| | - Yujie Huang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387, People's Republic of China
| |
Collapse
|
3
|
Okamoto K, Nagahara S, Imada Y, Narita R, Kitano Y, Chiba K. Hydrosilane-Mediated Electrochemical Reduction of Amides. J Org Chem 2021; 86:15992-16000. [PMID: 34152146 DOI: 10.1021/acs.joc.1c00931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical reduction of amides was achieved by using a hydrosilane without any toxic or expensive metals. The key reactive ketyl radical intermediate was generated by cathodic reduction. Continuous reaction with anodically generated silyl radicals or zinc bromide resulted in chemoselective deoxygenation to give the corresponding amines.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shingo Nagahara
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yasushi Imada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Risako Narita
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|