1
|
Mushtaq A, Zahoor AF, Ahmad MN, Khan SG, Akhter N, Nazeer U, Mansha A, Ahmad H, Chaudhry AR, Irfan A. Accessing the synthesis of natural products and their analogues enabled by the Barbier reaction: a review. RSC Adv 2024; 14:33536-33567. [PMID: 39439835 PMCID: PMC11495476 DOI: 10.1039/d4ra05646a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024] Open
Abstract
The Barbier reaction is significantly referred to as one of the efficient carbon-carbon bond forming reactions which involves the treatment of haloalkanes and carbonyl compounds by utilizing the catalytic role of a diverse range of metals and metalloids. The Barbier reaction is tolerant to a variety of functional groups, allowing a broad substrate scope with the employment of lanthanides, transition metals, amphoteric elements or alkaline earth metals. This reaction is also water-resistant, thereby overcoming the challenges posed by moisture sensitive organometallic species involving C-C bond formation reactions. The Barbier reaction has significantly found its applicability towards the synthesis of intricate and naturally occurring organic compounds. Our review provides an outlook on the synthetic applications of the Barbier reaction and its variants to accomplish the preparation of several natural products, reported since 2020.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Mirza Nadeem Ahmad
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Naheed Akhter
- Department of Biochemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Hamad Ahmad
- Department of Chemistry, University of Management and Technology Lahore 54000 Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P.O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
2
|
Chao YH, Jamwal P, Ananda Rao G, Gurubrahamam R, Chen K. Chiral Spirophosphoric-Acid-Catalyzed Divergent Vinylogous Mannich and aza-Friedel-Crafts Reactions of 2-Methoxyfuran. Org Lett 2024; 26:4938-4944. [PMID: 38838351 DOI: 10.1021/acs.orglett.4c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The first enantioselective vinylogous Mannich reaction is developed using 2-methoxyfuran under chiral spirophosphoric acid catalysis. The strategy involves 4-isoxazoline derivatives as cyclic ketimine surrogates and provides γ-butenolide scaffolds (up to 97% ee and >20:1 dr). The mechanistic investigations suggest that an in situ generated water molecule plays a crucial role in delivering γ-butenolide, while the use of molecular sieves delivers aza-Friedel-Crafts products. The synthetic utility of γ-butenolide is shown toward obtaining piperidone skeleton via a lactone-lactam rearrangement.
Collapse
Affiliation(s)
- Yi-Han Chao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11677
| | - Paru Jamwal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu and Kashmir 181221, India
| | - Gunda Ananda Rao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11677
| | - Ramani Gurubrahamam
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu and Kashmir 181221, India
| | - Kwunmin Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 11677
| |
Collapse
|
3
|
Huang WW, Cheng JT, Hsiao WT, Chiou WH. Stereodivergent Synthesis of Alkaloid (±)-223A and (±)-6- epi-223A via Rh-Catalyzed Hydroformylation Double Cyclization. J Org Chem 2024; 89:5091-5097. [PMID: 38456271 PMCID: PMC11002921 DOI: 10.1021/acs.joc.3c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
A stereodivergent approach toward total syntheses of Dendrobatid alkaloids 223A and 6-epi-223A is described. The approach features a concise construction of an indolizidine skeleton by Rh-catalyzed domino hydroformylation double cyclization and sequential stereocontrolled transformations such as reductive alkylation or anti-selective α-alkylation of the 5-oxoindolizidine. These stereoselective reactions afford the desired stereochemistry in the targets.
Collapse
Affiliation(s)
- Wen-Wei Huang
- Department of Chemistry, National Chung-Hsing University, Taichung 402202, Taiwan, R.O.C.
| | | | | | - Wen-Hua Chiou
- Department of Chemistry, National Chung-Hsing University, Taichung 402202, Taiwan, R.O.C.
| |
Collapse
|
4
|
Shit S, Bora SK, Sahu AK, Saikia AK. Synthesis of Spiro[furan-2,1'-isoindolin]-3'-ones from 2-(4-Hydroxybut-1-yn-1-yl)benzonitriles and Aryl Aldehydes under the Action of Triflic Acid. J Org Chem 2022; 87:11634-11643. [PMID: 35976061 DOI: 10.1021/acs.joc.2c01286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis of spiro[furan-2,1'-isoindolin]-3'-ones from 2-(4-hydroxybut-1-yn-1-yl)benzonitriles and aryl aldehydes is demonstrated. It involves the initial formation of dihydrofuranylideneisoindolinone via intramolecular sequential Prins and Ritter reactions, followed by the ring opening of the furanyl moiety to generate N-acyliminium ions and alcohols for the final cyclization reaction, and the spiro-cyclic compounds are produced in moderate to good yields. It is a one-pot, three-component reaction in which one new quaternary carbon, two five-membered rings, one C-N bond, two C-O bonds, and one C-C bond are formed. The reaction is carried out with a Brønsted acid from 0 °C to room temperature within a short period of time.
Collapse
Affiliation(s)
- Sudip Shit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Surjya Kumar Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Li Z, Zhao F, Ou W, Huang P, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
6
|
Biswas S, Porashar B, Arandhara PJ, Saikia AK. Synthesis of pyrimido[2,1- a]isoindolone and isoindolo[2,1- a]quinazolinone via intramolecular aza-Prins type reaction. Chem Commun (Camb) 2021; 57:11701-11704. [PMID: 34693411 DOI: 10.1039/d1cc04554g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel aza-Prins type cyclization reaction involving N-acyliminium ions and amides is reported for the synthesis of tetrahydropyrimido[2,1-a]isoindole-2,6-dione and 6,6a-dihydroisoindolo[2,1-a]quinazoline-5,11-dione derivatives in excellent yields. The strategy features inexpensive reagents, mild reaction conditions, and metal-free synthesis of N-heterocyclic frameworks. Further, post-synthetic modification results in the unprecedented formation of its triazole, tetracyclic diazacyclopenta[def]phenanthrene-1,4(9a1H)-dione and carbonyl derivatives.
Collapse
Affiliation(s)
- Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Bikoshita Porashar
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| |
Collapse
|
7
|
Li Z, Zhao F, Ou W, Huang PQ, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021; 60:26604-26609. [PMID: 34596947 DOI: 10.1002/anie.202111029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 12/15/2022]
Abstract
A variety of inert tertiary amides have been successfully transformed into synthetically important chiral propargylamines in high yields with good to excellent enantioselectivities via a relayed sequence of Ir catalyzed partial reduction and Cu/GARPHOS catalyzed asymmetric alkynylation with terminal alkynes. The reaction was readily extended to some drug molecules and the transformations of representative products have been demonstrated, thus attesting the practical utilities and the robust nature of the protocol.
Collapse
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
8
|
Veliu R, Schneider C. Stereoselective Synthesis of the Decahydroquinoline Alkaloid cis- 195J. J Org Chem 2021; 86:11960-11967. [PMID: 34351752 DOI: 10.1021/acs.joc.1c01346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first enantioselective synthesis of two C-5 diastereomers of the proposed structure of the decahydroquinoline alkaloid cis-195J has been achieved. The key step of our strategy is the highly stereoselective vinylogous Mukaiyama-Mannich reaction (VMMR), which gave rise to the first two stereogenic centers at the ring fusion with excellent diastereo- and enantiocontrol. Through alkyne cyclization and enamine reduction the correct cis-configuration between C-2, C-4a, and C-8a in the decahydroquinoline backbone was established. Subsequently, a radical cyclization of a tethered alkyl iodide onto the enoate assembled the bicyclic cis-decahydroquinoline as a mixture of two C-5 diastereomers. Further elaboration of the C-5 side chain eventually provided both diastereomers of cis-195J, which were readily separated, and their constitution and configuration were thus unambiguously proven for the first time.
Collapse
Affiliation(s)
- Rudina Veliu
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| |
Collapse
|
9
|
Matheau‐Raven D, Dixon DJ. General α-Amino 1,3,4-Oxadiazole Synthesis via Late-Stage Reductive Functionalization of Tertiary Amides and Lactams*. Angew Chem Int Ed Engl 2021; 60:19725-19729. [PMID: 34191400 PMCID: PMC8457168 DOI: 10.1002/anie.202107536] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/25/2023]
Abstract
An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol %) Vaska's complex (IrCl(CO)(PPh3 )2 ) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of α-amino 1,3,4-oxadiazole architectures were accessed from carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. The high chemoselectivity of the catalytic reductive activation step allowed late-stage functionalization of 10 drug molecules, including the synthesis of heterodiazole-fused drug-drug conjugates.
Collapse
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Darren J. Dixon
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordUK
| |
Collapse
|
10
|
Matheau‐Raven D, Dixon DJ. General α‐Amino 1,3,4‐Oxadiazole Synthesis via Late‐Stage Reductive Functionalization of Tertiary Amides and Lactams**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Matheau‐Raven
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| | - Darren J. Dixon
- Chemistry Research Laboratory Department of Chemistry University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|