1
|
Liu C, Cai Z, Luo J, Wu L, He L. Arynes Promoted Dehydrosulfurization of Thioamides: Access to Nitriles and Diaryl Sulfides. Org Lett 2024; 26:7678-7682. [PMID: 39214529 DOI: 10.1021/acs.orglett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An aryne-promoted dehydrosulfurization reaction of thioamides to give nitriles and diaryl sulfides in a one-pot manner is presented. Aromatic, heteroaromatic, and aliphatic natural products and drug-derived nitriles and diaryl sulfides were obtained in good to excellent yields. Especially, selenoamide was also a suitable substrate and produced diaryl selenide and nitrile in high yields. The D-labeled experiments indicated that the protons of thioamides transfer to diaryl sulfides.
Collapse
Affiliation(s)
- Cuicui Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Xinjiang Uygur Autonomous Region, 832000, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
2
|
Luo Y, He X, Jiang Y, Li J, Wu L, Cai Z, He L. Trideuteromethylthiolation through Reaction of Arynes, S-Methyl- d3 Sulfonothioate with Sulfonamides or Amides: Access to Trideuteromethylated Sulfilimines. J Org Chem 2024; 89:11766-11776. [PMID: 39096290 DOI: 10.1021/acs.joc.4c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
A direct and practical three-component tandem reaction of arynes, S-methyl-d3 sulfonothioate with sulfonamides or amides is developed. The reaction is highly efficient and chemoselective, which allows mild synthesis of trideuteromethylated sulfilimines with broad substrate scope and good functional group compatibility, giving the products in good to excellent yields with 92%-99% deuterium incorporation. Mechanism studies disclosed sulfenamide that generated in situ is the key intermediate for the reaction. This protocol provides potential method for introduction of -SCD3 moiety for deuteration of marked drugs and drug candidates containing sulfilimine skeleton.
Collapse
Affiliation(s)
- Yuping Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xiujuan He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yike Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jie Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region 832000, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
3
|
Lei S, Bu S, Yao M, Wang SR. Divergent Aromatization of α-Halobenzyl γ-Butenolides Initiated by Selective Enol Protonation to Benzo[ c]fluorenones and Naphthalenes. J Org Chem 2024; 89:11067-11071. [PMID: 39041582 DOI: 10.1021/acs.joc.4c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
An unprecedented divergent aromatization reaction of α-halobenzyl γ-butenolides has been described for the selective and concise synthesis of highly substituted benzo and higher π-extended fluorenones, and 1,3-disubstituted naphthalenes depending on the migration ability of the quaternary α-substituent. This aromatization switch from Ag+-mediated planarization to ylidenebutenolides likely originates from selective protonation on the enolic double bond rather than the benzyl halides by TfOH.
Collapse
|
4
|
Kucharski MM, Watson AJB, Lloyd-Jones GC. Speciation and kinetics of fluoride transfer from tetra- n-butylammonium difluorotriphenylsilicate ('TBAT'). Chem Sci 2024; 15:4331-4340. [PMID: 38516098 PMCID: PMC10952091 DOI: 10.1039/d3sc05776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/06/2023] [Indexed: 03/23/2024] Open
Abstract
Tetra-n-butylammonium difluorotriphenylsilicate (TBAT) is a conveniently handled anhydrous fluoride source, commonly used as a surrogate for tetra-n-butylammonium fluoride (TBAF). While prior studies indicate that TBAT reacts rapidly with fluoride acceptors, little is known about the mechanism(s) of fluoride transfer. We report on the interrogation of the kinetics of three processes in which fluoride is transferred from TBAT, in THF and in MeCN, using a variety of NMR methods, including chemical exchange saturation transfer, magnetisation transfer, diffusion analysis, and 1D NOESY. These studies reveal ion-pairing between the tetra-n-butylammonium and difluorotriphenylsilicate moieties, and a very low but detectable degree of fluoride dissociation, which then undergoes further equilibria and/or induces decomposition, depending on the conditions. Degenerate exchange between TBAT and fluorotriphenylsilane (FTPS) is very rapid in THF, inherently increases in rate over time, and is profoundly sensitive to the presence of water. Addition of 2,6-di-tert-butylpyridine and 3 Å molecular sieves stabilises the exchange rate, and both dissociative and direct fluoride transfer are shown to proceed in parallel under these conditions. Degenerate exchange between TBAT and 2-naphthalenyl fluorosulfate (ARSF) is not detected at the NMR timescale in THF, and is slow in MeCN. For the latter, the exchange is near-fully inhibited by exogenous FTPS, indicating a predominantly dissociative character to this exchange process. Fluorination of benzyl bromide (BzBr) with TBAT in MeCN-d3 exhibits moderate progressive autoinhibition, and the initial rate of the reaction is supressed by the presence of exogenous FTPS. Overall, TBAT can act as a genuine surrogate for TBAF, as well as a reservoir for rapidly-reversible release of traces of it, with the relative contribution of the pathways depending, inter alia, on the identity of the fluoride acceptor, the solvent, and the concentration of endogenous or exogenous FTPS.
Collapse
Affiliation(s)
- Maciej M Kucharski
- School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Allan J B Watson
- School of Chemistry, University of St Andrews North Haugh, St Andrews KY16 9ST UK
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
5
|
Xie P, Zheng Y, Luo Y, Luo J, Wu L, Cai Z, He L. Synthesis of Sulfilimines via Multicomponent Reaction of Arynes, Sulfamides, and Thiosulfonates. Org Lett 2023; 25:6133-6138. [PMID: 37579216 DOI: 10.1021/acs.orglett.3c02217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In this work, a facile and efficient method for the synthesis of sulfilimines through multicomponent reaction of arynes, sulfamides, and thiosulfonates was developed. A variety of structurally diverse substrates and functional groups were very compatible in the reaction, giving the corresponding sulfilimines in good to high yields. This protocol could be conducted on a gram scale, and the product was easily converted to sulfide and sulfoximine. Mechanism studies revealed that sulfenamide generated in situ is the key intermediate for the reaction.
Collapse
Affiliation(s)
- Pei Xie
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yating Zheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yuping Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jinyun Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Leifang Wu
- Analysis and Testing Center of Shihezi University, Shihezi University, Shihezi 832000, P. R. China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Lin He
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
6
|
Lu T, Wang B, Chang W, Liu L, Li J. N-Fluorobenzamide-Directed Formal [4+2] Cycloaddition Reaction with Maleic Anhydride: Access to Fluorescent Aminonaphthalic Anhydrides. J Org Chem 2023; 88:818-827. [PMID: 36660857 DOI: 10.1021/acs.joc.2c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a formal [4+2] cycloaddition reaction of N-fluorobenzamides and maleic anhydride in the presence of CuI and LiOH, and a series of fluorescent 1-amino-2,3-naphthalic anhydrides were produced in good yields. This reaction proceeded via a multistep process involving nitrogen-centered radical generation, 1,5-hydrogen atom transfer, and benzylic radical addition to the amide carbonyl oxygen to generate an N-(tert-butyl) isobenzofuran-1(3H)-imine intermediate, which isomerized to an N-(tert-butyl) isobenzofuran-1-amine via deprotonation and protonation with the aid of LiOH; finally, the amine underwent a [4+2] cycloaddition reaction with maleic anhydride to give the 1-amino-2,3-naphthalic anhydride product upon dehydrating aromatization. Notably, the corresponding naphthalic anhydride products could be transformed into a diverse array of naphthalimides. Both the naphthalic anhydrides and the naphthalimides exhibited similar fluorescent features.
Collapse
Affiliation(s)
- Tianyu Lu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Boyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Weixing Chang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lingyan Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94#, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
7
|
Chaitanya NK, Rao YNS, Choutipalli VSK, Mainkar PS, Subramanian V, Chandrasekhar S. Cascade aryne insertion/vinylogous aldol reaction of vinyl-substituted β-keto/enol carbonyls. Chem Commun (Camb) 2022; 58:3178-3181. [PMID: 35171160 DOI: 10.1039/d1cc06810e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyclic and acyclic vinyl substituted β-keto/enol carbonyl substrates, on reaction with arynes, result in differentially substituted naphthyl carbocycles, hitherto difficult to synthesize with existing protocols. While the substitutions on the arynes have no role, the ring size of the cyclic β-keto/enol esters has a profound influence on the product formation.
Collapse
Affiliation(s)
- Nandikolla Krishna Chaitanya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Y N Sambasiva Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkata Surya Kumar Choutipalli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Centre for High Computing, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Zhang F, An Y, Liu J, Du G, Cai Z, He L. Assembly of unsymmetrical 1,3,5-triarylbenzenes via tandem reaction of β-arylethenesulfonyl fluorides and α-cyano-β-methylenones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal-free tandem reaction of β-arylethenesulfonyl fluorides and α-cyano-β-methylenones has been revealed. In the presence of cesium carbonate, 2-arylethenesulfonyl fluorides react with α-cyano-β-methylenones through a tandem Diels-Alder cycloaddition/sulfur (VI) fluoride...
Collapse
|
9
|
Liu S, Xie P, Wu L, Zhao J, Cai Z, He L. Transition-Metal-Free Synthesis of 4-Amino Isoquinolin-1(2H)-ones via Tandem Reaction of Arynes and Oxazoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01666k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and transition-metal-free method for the synthesis of 4-amino isoquinolin-1(2H)-ones has been developed. Arynes react with 4, 5-disubstituted oxazoles through a tandem Diels-Alder reaction/dehydrogenation-aromatization/tautamerization process to produce 4-amino isoquinolin-1(2H)-ones...
Collapse
|
10
|
Yin L, Xu M, Wang Y, Xie H, Yuan Y, Wang C, Jiang YY, Li Y. Regioselective Synthesis of Tetrasubstituted Benzenes via Co-Catalyzed Cycloaddition of Alkynyl Ketones and 2-Acetylpyridines. J Org Chem 2021; 86:12158-12167. [PMID: 34376046 DOI: 10.1021/acs.joc.1c01496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Co(II)-catalyzed cycloaddition reaction of alkynyl ketones and 2-acetylpyridines using 2,2'-bipyridine as the ligand has been developed. These reactions have been realized through Co-catalyzed reductive coupling of two molecules of 2-acetylpyridine followed by regioselective insertion of the alkynone. It is the first example of regioselective cyclotrimerization of one molecule of alkyne and two molecules of monoketone to polysubstituted benzene derivatives in good to excellent yields. A mechanism involving the formation of a cobaltacyclopentane via homocoupling of 2-acetylpyridines is proposed, and it is supported by the DFT calculations.
Collapse
Affiliation(s)
- Liqiang Yin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Murong Xu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Huihui Xie
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yang Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chengyu Wang
- School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong 276000, China
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
11
|
Jia Q, Yin G, Lan Y, Lin Y, Ren Q. Base‐mediated Benzannulation Reactions for the Synthesis of Densely Functionalized Aryl α‐Keto Esters. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qianfa Jia
- College of Chemistry Chemical Engineering and Materials Science Yibin University Yinbin 644000 P. R. China
| | - Guoliang Yin
- College of Chemistry Chemical Engineering and Materials Science Yibin University Yinbin 644000 P. R. China
| | - Yunfei Lan
- College of Pharmaceutical Science Southwest University Chongqing 400715 P. R. China
| | - Yinhe Lin
- College of Chemistry Chemical Engineering and Materials Science Yibin University Yinbin 644000 P. R. China
| | - Qiao Ren
- College of Pharmaceutical Science Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
12
|
Sanjeev K, Raju S, Chandrasekhar S. Aromaticity-Driven Access to Cycloalkyl-Fused Naphthalenes. Org Lett 2021; 23:4013-4017. [PMID: 33938758 DOI: 10.1021/acs.orglett.1c01220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the efficient synthesis of cycloalkyl-fused naphthalenes through the [4 + 2]-cycloaddtion/decarboxylative aromatization of alkyne-tethered aryne insertion adducts. These scaffolds were difficult to synthesize using conventional reactions. The reaction proceeds via the formation of a benzopyrylium intermediate followed by intramolecular [4 + 2] cycloaddition and a subsequent decarboxylation pathway. This method is also compatible with allene-tethered substrates to afford similar products. In addition, the one-pot synthesis of polysubstituted naphthalenes via aryne insertion/benzannulation has also been developed in good yield.
Collapse
Affiliation(s)
- Karekar Sanjeev
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Silver Raju
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
An Y, Zhang F, Cai Z, Du G. Direct Assembly of Polysubstituted Benzenes via Base-Catalyzed Benzannulation Reaction of α-Cyano- β-methylalkenyl-(hetero)aryl Ketones. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
An Y, Zhang F, Du G, Cai Z, He L. Construction of 6 H-benzo[ c]thiochromenes via a tandem reaction of arynes with thionoesters. Org Chem Front 2021. [DOI: 10.1039/d1qo01177d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A mild and transition-metal free method has been proposed for the synthesis of 6H-benzo[c]thiochromenes via the tandem reactions of arynes with thionoesters.
Collapse
Affiliation(s)
- Yi An
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Fang Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Guangfen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Zhihua Cai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| |
Collapse
|