1
|
Wu J, Niu J, Liu H, Xie R, Zhu N. Conversion of atmospheric CO 2 catalyzed by thiolate-based ionic liquids under mild conditions: efficient synthesis of 2-oxazolidinones. Org Biomol Chem 2024; 22:8138-8143. [PMID: 39149914 DOI: 10.1039/d4ob01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Thiolate-based ionic liquids, specifically the catalyst [TBP][2-Tp], have demonstrated their efficiency in catalyzing the reaction of CO2 with propargylic amine. This novel synthetic method can be used to synthesize various 2-oxazolidinone derivatives with high yields. The catalyst can be easily regenerated and reused without any decline in its catalytic activity. Experimental and spectroscopic investigations have confirmed that the high activity of [TBP][2-Tp] is attributed to the synergistic effect of its S and N sites in activating CO2, rather than depending solely on basicity to activate the amino group of propargylic amine. These findings highlight the significant potential of thiolate-based ionic liquids for applications in CO2 activation and conversion.
Collapse
Affiliation(s)
- Jiakai Wu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Junping Niu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Hui Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Ruijun Xie
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China.
| |
Collapse
|
2
|
Wu ZL, Zhai YT, Bian GG, Guo LJ, Zhang YX, Wei HY. Conversion of Propargylic Amines with CO 2 Catalyzed by a Highly Stable Copper(I) Iodide Thorium-Based Heterometal-Organic Framework. Inorg Chem 2024; 63:13450-13458. [PMID: 38959430 DOI: 10.1021/acs.inorgchem.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The conversion of CO2 to generate high-value-added chemicals has become one of the hot research topics in green synthesis. Thereinto, the cyclization reaction of propargylic amines with CO2 is highly attractive because the resultant oxazolidinones are widely found in pharmaceutical chemistry. Cu(I)-based metal-organic frameworks (MOFs) as catalysts exhibit promising application prospects for CO2 conversion. However, their practical application was greatly limited due to Cu(I) being liable to disproportionation or oxidization. Herein, the solid copper(I) iodide thorium-based porous framework {[Cu5I6Th6(μ3-O)4(μ3-OH)4(H2O)10(L)10]·OH·4DMF·H2O}n (1) (HL = 2-methylpyridine-4-carboxylic acid) constructed by [Th6] clusters and [CuxIy] subunits was successfully prepared and structurally characterized. To our knowledge, this is the first copper(I) iodide-based actinide organic framework. Catalytic investigations indicate that 1 can effectively catalyze the cyclization of propargylic amines with CO2 under ambient conditions, which can be reused at least five times without a remarkable decline of catalytic activity. Importantly, 1 exhibits excellent chemical stability and the oxidation state of Cu(I) in it can remain stable under various conditions. This work can provide a valuable strategy for the synthesis of stable Cu(I)-MOF materials.
Collapse
Affiliation(s)
- Zhi-Lei Wu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| | - Yu-Ting Zhai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| | - Ge Ge Bian
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Ling-Jing Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Ya-Xin Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| | - Hai-Ying Wei
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| |
Collapse
|
3
|
Shen Y, Chen F, Du Z, Zhang H, Liu J, Liu N. Cu(I) Complexes Catalyzed the Dehydrogenation of N-Heterocycles. J Org Chem 2024; 89:4530-4537. [PMID: 38483270 DOI: 10.1021/acs.joc.3c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A copper-catalyzed method for the dehydrogenation of various nitrogen-containing heterocycles to furnish quinolines and indoles has been developed. A range of 1,2,3,4-tetrahydroquinolines underwent dehydrogenation by employing 2 mol % of copper complex Cat 3 as a catalyst and using O2 as an oxidant at 120 °C in 1,2-dichlorobenzene to afford the desired quinolines. The method enables the dehydrogenation of a variety of indolines in the presence of 2 mol % of copper complex Cat 2, using 10 mol % of TEMPO as an additive and O2 as an oxidant under room temperature in tetrahydrofuran to furnish indoles in high yields. Mechanistic studies suggested that the dehydrogenative activity is ascribed to the formation of a copper(II) active species from copper(I) complexes oxidized by O2, which was proved by high-resolution mass spectrometry (HRMS). The copper-catalyzed dehydrogenation reaction proceeds via a superoxide radical anion (·O2-) as proved by electron paramagnetic resonance (EPR) spectrometry. In situ infrared spectroscopy revealed that the dihydroquinoline intermediate was formed in the dehydrogenation of 1,2,3,4-tetrahydroquinolines.
Collapse
Affiliation(s)
- Yangyang Shen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North fourth Road, Shihezi, Xinjiang 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North fourth Road, Shihezi, Xinjiang 832003, China
| | - Zhihong Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North fourth Road, Shihezi, Xinjiang 832003, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North fourth Road, Shihezi, Xinjiang 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North fourth Road, Shihezi, Xinjiang 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
4
|
Hu YL, Liu XB, Yang LL. Novel and highly efficient transformation of carbon dioxide into 2-oxazolidinones over Al-MCM-41 mesoporous-supported ionic liquids. ENVIRONMENTAL TECHNOLOGY 2024; 45:1855-1869. [PMID: 36476067 DOI: 10.1080/09593330.2022.2156816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A type of Al-MCM-41 supported dual imidazolium ionic liquids were constructed and efficiently used as catalysts for the synthesis of 2-oxazolidinones from epoxides, amines, and CO2. The influence of the different catalysts and reaction parameters on the catalytic behaviours was investigated. Al-MCM-41@ILTiCl5 was identified as the most excellent catalyst because it could efficiently promote the three-component cycloaddition of CO2, epoxide, and amines to form the corresponding 2-oxazolidinones in high to excellent yields (84∼96%) with excellent selectivities (98∼99.7%). In addition, the recovery and reuse performances of Al-MCM-41@ILTiCl5 were examined. The catalyst could be recovered by simple filtration and reused six times without a change in the catalytic activity. Green reaction conditions, operational simplicity, feasibility, and sustainability of the functionalized catalyst are the main highlights of the present protocol.
Collapse
Affiliation(s)
- Yu Lin Hu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, People's Republic of China
| | - Xiao Bing Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, People's Republic of China
| | - Li Li Yang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, People's Republic of China
| |
Collapse
|
5
|
Kumar R, Mahata B, Gayathridevi S, Vipin Raj K, Vanka K, Sen SS. Lanthanide Mimicking by Magnesium for Oxazolidinone Synthesis. Chemistry 2024; 30:e202303478. [PMID: 37897110 DOI: 10.1002/chem.202303478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
In the last decade, magnesium complexes have emerged as a viable alternative to transition-metal catalysts for the hydrofunctionalization of unsaturated bonds. However, their potential for advanced catalytic reactions has not been thoroughly investigated. To address this gap, we have developed a novel magnesium amide compound (3) using a PNP framework that is both bulky and flexible. Our research demonstrates that compound 3 can effectively catalyze the synthesis of biologically significant oxazolidinone derivatives. This synthesis involves a tandem reaction of hydroalkoxylation and cyclohydroamination of isocyanate using propargyl alcohol. Furthermore, we conducted comprehensive theoretical calculations to gain insights into the reaction mechanism. It is important to note that these types of transformations have not been reported for magnesium and would significantly enhance the catalytic portfolio of the 7th most abundant element.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Biplab Mahata
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Gayathridevi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Yuan Q, Huang Z, Chai Z, Hong D, Zhu S, Zhou S, Zhu X, Wei Y, Wang S. Indolyl-based Copper(I) Complex-Catalyzed Intermolecular Trifluoromethylazolation of Alkenes via Radical Process. Org Lett 2022; 24:8948-8953. [DOI: 10.1021/acs.orglett.2c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Qingbing Yuan
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zeming Huang
- Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhuo Chai
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shan Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shuangliu Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiancui Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yun Wei
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shaowu Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
The tandem reaction of propargylamine/propargyl alcohol with CO2: Reaction mechanism, catalyst activity and product diversity. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Gurung PB, Thapa P, Hettiarachchi IL, Zhu J. Cationic gold(I)-catalyzed glycosylation with glycosyl N-1,1-dimethylpropargyl carbamate donors. Org Biomol Chem 2022; 20:7006-7010. [PMID: 36000552 DOI: 10.1039/d2ob01436j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A mild and efficient cationic gold(I)-catalyzed O-glycosylation methodology involving the use of bench-stable glycosyl N-1,1-dimethylpropargyl carbamate donors has been developed. In the presence of 1-2 mol% [tris(2,4-di-tert-butylphenyl)phosphite]gold(I) chloride and 5 mol% silver triflate, both "armed" and "disarmed" glycosyl N-1,1-dimethylpropargyl carbamate donors react with various sugar acceptors at room temperature to afford the corresponding glycosides in good to excellent yields. These glycosyl N-1,1-dimethylpropargyl carbamates are found to be orthogonal to regular phenyl thioglycoside donors. The utilization of this method has been demonstrated in the synthesis of a trisaccharide.
Collapse
Affiliation(s)
- Prem Bahadur Gurung
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| | - Ishani Lakshika Hettiarachchi
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, USA.
| |
Collapse
|
9
|
Song Y, Zhang Y, Chen Z, Wu X. Recent Advances in Copper‐Catalyzed Carboxylation Reactions with CO
2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yufei Song
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Yu Zhang
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Zhengkai Chen
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 Liaoning P. R. China
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
10
|
Recent Advances in the Synthesis of Five-Membered Cyclic Carbonates and Carbamates from Allylic or Propargylic Substrates and CO2. Catalysts 2022. [DOI: 10.3390/catal12050547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic carbamates and carbonates are highly desirable compounds that have found a wide range of applications in drug design, medicinal chemistry, material science, and the polymer industry. The development of new catalytic carbonate and carbamate forming reactions, which employ carbon dioxide as a cheap, green, abundant, and easily available reagent, would thus represent an ideal substitution for existing methods. In this review, the advancements in the catalytic conversion of allylic and propargylic alcohols and amines to corresponding five-membered cyclic carbonates and carbamates are summarized. Both the metal- and the organocatalyzed methods are reviewed, as well as the proposed mechanisms and key intermediates of the illustrated carbonate and carbamate forming reactions.
Collapse
|
11
|
Chen F, Tao S, Liu N, Dai B. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO 2 at Room Temperature. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Gu AL, Wang WT, Cheng XY, Hu TD, Wu ZL. Non-Noble-Metal Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with Atmospheric Carbon Dioxide under Ambient Conditions. Inorg Chem 2021; 60:13425-13433. [PMID: 34369141 DOI: 10.1021/acs.inorgchem.1c01776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The coupling reaction of propargylic amines and carbon dioxide (CO2) to synthesize 2-oxazolidinones is an important reaction in industrial production, and yet harsh reaction conditions and noble-metal catalysts are often required to achieve high product yields. Herein, one novel noble-metal-free three-dimensional framework, [Mg3Cu2I2(IN)4(HCOO)2(DEF)4]n (1), assembled by magnesium and copper clusters was synthesized and applied to this reaction. Compound 1 displays excellent solvent stability. Importantly, 1, acting as heterogeneous catalyst, can highly catalyze the cyclization of propargylic amines with CO2 under atmospheric pressure at room temperature, which can be recycled at least five times without an obvious decrease of the catalytic activity. NMR spectroscopy, coupled with 13C-isotope- and deuterium-labeling experiments, clearly clarifies the mechanism of this catalytic system: CO2 was successfully captured and converted to the product of 2-oxazolidinones, the C≡C bond of propargylic amines can be effectively activated by 1, and proton transfer was involved in the reaction process. Density functional theory calculations are further conducted to uncover the reaction path and the crucial role of compound 1 during the reaction.
Collapse
Affiliation(s)
- Ai-Ling Gu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Wan-Ting Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Xin-Yu Cheng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Tian-Ding Hu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China.,Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Zhi-Lei Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P.R. China
| |
Collapse
|