1
|
Nandwana NK, Patel OPS, Mehra MK, Kumar A, Salvino JM. Recent Advances in Metal-Catalyzed Approaches for the Synthesis of Quinazoline Derivatives. Molecules 2024; 29:2353. [PMID: 38792215 PMCID: PMC11124210 DOI: 10.3390/molecules29102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Nitesh K. Nandwana
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Om P. S. Patel
- Department of Technical Education, Government Polytechnic Naraini, Banda 210001, India
| | - Manish K. Mehra
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph M. Salvino
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Arumugam A, Senadi GC. Visible-light photocatalyzed C-N bond activation of tertiary amines: a three-component approach to synthesize quinazolines. Org Biomol Chem 2024; 22:1245-1253. [PMID: 38248577 DOI: 10.1039/d3ob02067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A metal-free three-component approach has been developed to prepare 2,4-disubstituted quinazolines from o-acylanilines, trialkylamines and ammonium chloride under visible-light using eosin Y as the photocatalyst. The notable features of this work include (i) the use of tertiary amines as an alkyl synthon and triethanolamine as a C2-OH synthon; (ii) good functional group tolerance with 52%-98% yields; (iii) proof of concept with o-amino benzaldehyde as a substrate to deliver 2-methyl quinazoline 3pa; and (iv) gram-scale synthesis of compounds 3ga, 3ja and 3ma. A reductive quenching mechanism was proposed based on the control studies and redox potential values.
Collapse
Affiliation(s)
- Ajithkumar Arumugam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Liu Q, Liu X, Li Y, Zhou Y, Zhao L, Liang X, Liu H. Construction of Diversified Penta-Spiro-Heterocyclic and Fused-Heterocyclic Frameworks with Potent Antitumor Activity. Chemistry 2023; 29:e202301553. [PMID: 37370192 DOI: 10.1002/chem.202301553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Multiple-spiro/fused-heterocyclic frameworks containing indazolone are structurally unique and represent a class of potentially dominant skeletons. In this work, we successfully fulfilled Rh(III)-catalyst mediated substrate- and pH- controlled strategies to construct four novel types of complicated penta-spiro/fused-heterocyclic frameworks via C-H activation/[4+1] and [4+2] annulation cascades. This method had mild reaction conditions, a broad scope of substrates, moderate to good yields, and valuable applications, which could realize for the first time the generation of the novel di-spiro-heterocyclic and multiple fused-heterocyclic products with unique structures. More importantly, novel spiro[cyclohexane-indazolo[1,2-a]indazole] scaffold constructed by this method exhibited potent antitumor activity against a variety of refractory solid tumors and hematological malignancies in vitro. Overall, our work provided new insights into the construction of complex and diverse multiple spiro/fused-heterocyclic systems and offered novel valuable lead compounds for the discovery of antitumor drugs.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yazhou Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
4
|
Hao Z, Zhou X, Ma Z, Zhang C, Han Z, Lin J, Lu GL. Dehydrogenative Synthesis of Quinolines and Quinazolines via Ligand-Free Cobalt-Catalyzed Cyclization of 2-Aminoaryl Alcohols with Ketones or Nitriles. J Org Chem 2022; 87:12596-12607. [PMID: 36162131 DOI: 10.1021/acs.joc.2c00734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a convenient and efficient protocol to synthesize quinolines and quinazolines in one pot under mild conditions. A variety of substituted quinolines were synthesized in good to excellent yields (up to 97% yield) from the dehydrogenative cyclizations of 2-aminoaryl alcohols and ketones catalyzed by readily available Co(OAc)2·4H2O. This cobalt catalytic system also showed high activity in the reactions of 2-aminobenzyl alcohols with nitriles, affording various quinazoline derivatives (up to 95% yield). The present protocol offers an environmentally benign approach for the synthesis of N-heterocycles by employing an earth-abundant cobalt salt under ligand-free conditions.
Collapse
Affiliation(s)
- Zhiqiang Hao
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Xiaoyu Zhou
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Zongwen Ma
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Caicai Zhang
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Zhangang Han
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Jin Lin
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Tan Y, Jiang W, Ni P, Fu Y, Ding Q. One‐Pot Synthesis of Quinazolines via Elemental Sulfur‐Mediated Oxidative Condensation of Nitriles and 2‐(Aminomethyl)anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxing Tan
- Jiangxi Normal University Yaohu Campus CHINA
| | - Wujiu Jiang
- Jiangxi Normal University Yaohu Campus CHINA
| | | | - Yang Fu
- Jiangxi Normal University CHINA
| | | |
Collapse
|
6
|
Liu Q, Chen H, Li S, Guo Y, Cao S, Zhao Y. H
2
O
2
‐Promoted Inter‐ and Intramolecular C−N Bond Formation: Synthesis of Quinazoline Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202201231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qingjie Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Hong Chen
- College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shigai Li
- College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yanchun Guo
- College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shuxia Cao
- College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Yufen Zhao
- College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
- Institute Drug Discovery Technology Ningbo University Ningbo 315211 P. R. China
| |
Collapse
|
7
|
Yang J, Xie Z, Jin L, Chen X, Le Z. Synthesis of quinazoline by decarboxylation of 2-aminobenzylamine and α-keto acid under visible light catalysis. Org Biomol Chem 2022; 20:3558-3563. [PMID: 35416228 DOI: 10.1039/d2ob00219a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Quinazoline compounds demonstrate a variety of physiological and pharmacological activities. However, the most common syntheses require large quantities of oxidants, high temperature, and other extreme conditions. In this study, quinazoline compounds were synthesized from the condensation of α-keto acid and 2-aminobenzylamine and then decarboxylation under blue LED irradiation at room temperature without transition metal catalysts or additives. Therefore, we demonstrated that by using α-keto acid as the acyl source, decarboxylation can be realized under blue LED without oxidants, in a simple, mild, and environmentally friendly process.
Collapse
Affiliation(s)
- Jiangnan Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Xuehua Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
8
|
Meng XH, Xu XC, Wang Z, Liang YX, Zhao YL. NaN(SiMe3)2/CsTFA Copromoted Aminobenzylation/Cyclization of 2-Isocyanobenzaldehydes with Toluene Derivatives or Benzyl Compounds: One-Pot Access to Dihydroquinazolines and Quinazolines. J Org Chem 2022; 87:3156-3166. [DOI: 10.1021/acs.joc.1c02890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Shui H, Zhong Y, Luo N, Luo R, Ouyang L. Iridium-Catalyzed Acceptorless Dehydrogenative Coupling of 2-Aminoarylmethanols with Amides or Nitriles to Synthesize Quinazolines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1755-4700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractAn efficient iridium-catalyzed acceptorless dehydrogenative coupling (ADC) reaction for the preparation of various quinazolines from 2-aminoarylmethanols and amides or nitriles had been developed. A wide range of substituted 2-aminobenzyl alcohols and (hetero)aryl or alkyl benzamides and nitriles were well compatible to afford various quinazolines in excellent yields. Merits of this new strategy are the high atom-economy, mild reaction conditions, and simple operation, and the methodology is suitable for a variety of substrates.
Collapse
|
10
|
Mondal R, Guin AK, Chakraborty G, Paul ND. Metal-ligand cooperative approaches in homogeneous catalysis using transition metal complex catalysts of redox noninnocent ligands. Org Biomol Chem 2022; 20:296-328. [PMID: 34904619 DOI: 10.1039/d1ob01153g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalysis offers a straightforward route to prepare various value-added molecules starting from readily available raw materials. The catalytic reactions mostly involve multi-electron transformations. Hence, compared to the inexpensive and readily available 3d-metals, the 4d and 5d-transition metals get an extra advantage for performing multi-electron catalytic reactions as the heavier transition metals prefer two-electron redox events. However, for sustainable development, these expensive and scarce heavy metal-based catalysts need to be replaced by inexpensive, environmentally benign, and economically affordable 3d-metal catalysts. In this regard, a metal-ligand cooperative approach involving transition metal complexes of redox noninnocent ligands offers an attractive alternative. The synergistic participation of redox-active ligands during electron transfer events allows multi-electron transformations using 3d-metal catalysts and allows interesting chemical transformations using 4d and 5d-metals as well. Herein we summarize an up-to-date literature report on the metal-ligand cooperative approaches using transition metal complexes of redox noninnocent ligands as catalysts for a few selected types of catalytic reactions.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| |
Collapse
|
11
|
Verma S, Kujur S, Sharma R, Pathak DD. Cucurbit[6]uril supported β-Ni(OH) 2 nanoparticles as a heterogeneous catalyst for the synthesis of quinazolines via acceptorless dehydrogenative coupling of alcohols with nitriles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03484k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthesis of a series of quinazolines using β-Ni(OH)2-CB[6] as a heterogeneous nanocatalyst.
Collapse
Affiliation(s)
- Shruti Verma
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Shelly Kujur
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Richa Sharma
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, India
| | - Devendra D. Pathak
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| |
Collapse
|
12
|
Luo L, Liu H, Zeng W, Hu W, Wang D. BTP‐Rh@g‐C
3
N
4
as an efficient recyclable catalyst for dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lan Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
- China Synchem Technology Co., Ltd. Bengbu China
| | - Wei Zeng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wenkang Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
13
|
Kotwica K, Wielgus I, Proń A. Azaacenes Based Electroactive Materials: Preparation, Structure, Electrochemistry, Spectroscopy and Applications-A Critical Review. MATERIALS 2021; 14:ma14185155. [PMID: 34576378 PMCID: PMC8472324 DOI: 10.3390/ma14185155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
This short critical review is devoted to the synthesis and functionalization of various types of azaacenes, organic semiconducting compounds which can be considered as promising materials for the fabrication of n-channel or ambipolar field effect transistors (FETs), components of active layers in light emitting diodes (LEDs), components of organic memory devices and others. Emphasis is put on the diversity of azaacenes preparation methods and the possibility of tuning their redox and spectroscopic properties by changing the C/N ratio, modifying the nitrogen atoms distribution mode, functionalization with electroaccepting or electrodonating groups and changing their molecular shape. Processability, structural features and degradation pathways of these compounds are also discussed. A unique feature of this review concerns the listed redox potentials of all discussed compounds which were normalized vs. Fc/Fc+. This required, in frequent cases, recalculation of the originally reported data in which these potentials were determined against different types of reference electrodes. The same applied to all reported electron affinities (EAs). EA values calculated using different methods were recalculated by applying the method of Sworakowski and co-workers (Org. Electron. 2016, 33, 300-310) to yield, for the first time, a set of normalized data, which could be directly compared.
Collapse
Affiliation(s)
- Kamil Kotwica
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Correspondence:
| | - Ireneusz Wielgus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland; (I.W.); (A.P.)
| | - Adam Proń
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland; (I.W.); (A.P.)
| |
Collapse
|
14
|
Das S, Mondal R, Chakraborty G, Guin AK, Das A, Paul ND. Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|