1
|
Morikawa S, Verdonk C, John E, Lenzo L, Sbaraini N, Turo C, Li H, Jiang D, Chooi YH, Tan KC. The Velvet transcription factor PnVeA regulates necrotrophic effectors and secondary metabolism in the wheat pathogen Parastagonospora nodorum. BMC Microbiol 2024; 24:299. [PMID: 39127645 PMCID: PMC11316297 DOI: 10.1186/s12866-024-03454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The fungus Parastagonospora nodorum causes septoria nodorum blotch on wheat. The role of the fungal Velvet-family transcription factor VeA in P. nodorum development and virulence was investigated here. Deletion of the P. nodorum VeA ortholog, PnVeA, resulted in growth abnormalities including pigmentation, abolished asexual sporulation and highly reduced virulence on wheat. Comparative RNA-Seq and RT-PCR analyses revealed that the deletion of PnVeA also decoupled the expression of major necrotrophic effector genes. In addition, the deletion of PnVeA resulted in an up-regulation of four predicted secondary metabolite (SM) gene clusters. Using liquid-chromatography mass-spectrometry, it was observed that one of the SM gene clusters led to an accumulation of the mycotoxin alternariol. PnVeA is essential for asexual sporulation, full virulence, secondary metabolism and necrotrophic effector regulation.
Collapse
Affiliation(s)
- Shota Morikawa
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Callum Verdonk
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Evan John
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Leon Lenzo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Nicolau Sbaraini
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Chala Turo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Hang Li
- School of Molecular Sciences, University of Western Australia, Perth, Australia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - David Jiang
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia.
| |
Collapse
|
2
|
Roxo I, Amaral A, Portugal A, Trovão J. Draft genome sequence and comparative genomic analysis of Penicillium pancosmium MUM 23.27 isolated from raw honey. Arch Microbiol 2023; 206:36. [PMID: 38142242 DOI: 10.1007/s00203-023-03766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
The draft genome sequence and main genomic features of Penicillium pancosmium MUM 23.27, isolated from Portuguese raw honey are reported. The genome size is 34.82 Mb, containing a 48.99% GC content, 11,394 genes, with 39 rRNAs and 147 tRNAs/tmRNAs. Twenty-six BGCs were predicted with four exhibiting significant similarities with YWA1, chaetoglobosin A/chaetoglobosin C, squalestatin S1, and nidulanin A. Moreover, the whole-genome sequencing and in silico genomic analysis, allowed to further understand some aspects of this species habitat, resistance, and evolutionary genomic events. Altogether, the results obtained also allow to dwell deeper on particular Penicillia biological characteristics and genomic traits, permitting them to thrive in these honey substrates. In addition, this resource represents the first genome for the species and one of the first for raw honeys filamentous fungi.
Collapse
Affiliation(s)
- Ivo Roxo
- FitoLab - Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
| | - António Amaral
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- CEB, Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga/Guimarães, Portugal
- Laboratório SiSus, Instituto de Investigação Aplicada, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
| | - António Portugal
- FitoLab - Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, TERRA Associate Laboratory, University of Coimbra, Calçada Martim de Freitas 3000-456, Coimbra, Portugal
| | - João Trovão
- FitoLab - Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, TERRA Associate Laboratory, University of Coimbra, Calçada Martim de Freitas 3000-456, Coimbra, Portugal.
| |
Collapse
|