1
|
Annes SB, Perumal K, Anandhakumar K, Shankar B, Ramesh S. Transition-Metal-Free Dehydrogenation of Benzyl Alcohol for C-C and C-N Bond Formation for the Synthesis of Pyrazolo[3,4- b]pyridine and Pyrazoline Derivatives. J Org Chem 2023; 88:6039-6057. [PMID: 37125502 DOI: 10.1021/acs.joc.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A series of cascade reactions that produce a range of functionalized aromatic heterocyclic compounds with pyrazole/pyrazoline cores have been developed. The method relies on a metal-free dehydrogenative process to produce in-situ benzaldehydes. The produced benzaldehyde was then allowed to react with some other substances, including acetophenone, pyrazole amine, and phenylhydrazine. The intermediate produced from these substrates underwent several chemical processes, including electrocyclization, the aza-Diels-Alder reaction, and the formation of intramolecular C-N bonds. These positive outcomes would open up the possibility of producing biologically active pyrazolo[3,4-b]pyridine and pyrazoline derivatives through a variety of possible reactions.
Collapse
Affiliation(s)
- Sesuraj Babiola Annes
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Karuppaiah Perumal
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Kalaiselvan Anandhakumar
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, Tamil Nadu, India
| | - Subburethinam Ramesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
2
|
Le HX, Nguyen KD, Phan NTS, Le HV, Nguyen TT. t
‐BuONa‐Mediated Redox Condensation between
o‐
Nitroanilines and Benzyl Alcohols towards 2‐Phenyl Benzimidazoles under Transition‐Metal‐Free Conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Huy X. Le
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Khoa D. Nguyen
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nam T. S. Phan
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Ha V. Le
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T. Nguyen
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Avula B, Reddivari CKR, Muchumarri RMR, Eraganaboyina S, Zyryanov GV, Nemallapudi BR. Recent Advances in the Synthesis of Quinoxalines. A Mini Review. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2167215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Balakrishna Avula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, India
| | | | | | - Suneetha Eraganaboyina
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, India
| | - Grigory V. Zyryanov
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg, Russia
- Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, Yekaterinburg, Russia
| | | |
Collapse
|
4
|
Liu Y, Luo Q, Qiang Q, Wang H, Ding Y, Wang C, Xiao J, Li C, Zhang T. Successive Cleavage and Reconstruction of Lignin β-O-4 Models and Polymer to Access Quinoxalines. CHEMSUSCHEM 2022; 15:e202201401. [PMID: 36055966 DOI: 10.1002/cssc.202201401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The construction of N-heterocyclic compounds from lignin remains a great challenge due to the complex lignin structure and the involvement of multiple steps, including the cleavage of lignin C-O linkages and the formation of heterocyclic aromatic rings. Herein, the first example of KOH mediated sustainable synthesis of quinoxaline derivatives from lignin β-O-4 model compounds in a one-pot fashion under transition-metal-free conditions has been achieved. Mechanistic studies suggested that this transformation includes highly coupled cascade steps of cleavage of C-O bonds, dehydrative condensation, sp3 C-H bond oxidative activation, and intramolecular dehydrative coupling reaction. With this protocol, a wide range of functionalized quinoxalines, including an important drug compound AG1295, were synthesized from lignin β-O-4 model compounds and β-O-4 polymer, showcasing the application potential of lignin in pharmaceutical synthesis.
Collapse
Affiliation(s)
- Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Qi Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, United Kingdom
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
5
|
Jafarzadeh M, Sobhani SH, Gajewski K, Kianmehr E. Recent advances in C/ N-alkylation with alcohols through hydride transfer strategies. Org Biomol Chem 2022; 20:7713-7745. [PMID: 36169049 DOI: 10.1039/d2ob00706a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the most recent reports in three powerful and ever-growing fields of borrowing hydrogen, acceptorless dehydrogenative coupling, and base-mediated hydride transfer strategies; which pave the way for generating reactive intermediates via shuttling hydrogen (or hydride) between starting materials without any need for an external hydrogen source to easily construct more complex structures. There is a thorough focus on diversifying the utility of alcohols for C/N-alkylation leading to the synthesis of branched ketones, alcohols, amines, indols, and 6-membered nitrogen-containing heterocycles such as pyridines and pyrimidines, various transformations with the focus on C-C and C-N bond-forming reactions via metal-based catalysis or metal-free approaches in this context to give a global overview in this area.
Collapse
Affiliation(s)
- Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Seyed Hasan Sobhani
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | | | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| |
Collapse
|
6
|
Wang Q, Zhu B, Zhang X, Shi G, Liu J, Xu Q. Direct construction of quinoxaline derivatives from vicinal diols and o‐nitroanilines via NaOH‐mediated intermolecular cascade redox and annulation reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qi Wang
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Boran Zhu
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Xiaolan Zhang
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Guojun Shi
- Yangzhou University School of Chemistry and Chemical Engineering 225002 Yangzhou CHINA
| | - Jianping Liu
- Wenzhou University College of Chemistry and Materials Engineering 325035 Wenzhou CHINA
| | - Qing Xu
- Wenzhou University College of Chemistry and Materials Engineering Wenzhou University Town 325035 Wenzhou CHINA
| |
Collapse
|
7
|
Liang Y, Wang G, Li X, Zhang Q, Zhan H, Bi S, Wu Z, Liu W. In situ preparation of a ferric polymeric aluminum chloride–silica gel nanocatalyst by mechanical grinding and its solid-phase catalytic behavior in organic synthesis. NEW J CHEM 2022. [DOI: 10.1039/d2nj01802k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PLASC catalysts have significant green chemistry properties and can be used as new cheap, efficient and green catalysts.
Collapse
Affiliation(s)
- Yuwang Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Gang Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Xiang Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Qiuping Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Haijuan Zhan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Shuxian Bi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Zhiqiang Wu
- College of Chemistry and Chemical Engineering, Ningxia Normal university, Guyuan, 756000, P. R. China
| | - Wanyi Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| |
Collapse
|
8
|
Suzuki Y, Takehara R, Miura K, Ito R, Suzuki N. Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents. J Org Chem 2021; 86:16892-16900. [PMID: 34797078 DOI: 10.1021/acs.joc.1c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A facile and regioselective synthesis of quinoxalines, an important motif in medicinal chemistry and materials sciences, was developed. Despite their prospective utility, the regioselective preparation of trisubstituted quinoxalines has not been previously established. In the reported system, hypervalent iodine reagents catalyzed the annulation between α-iminoethanones and o-phenylenediamines in a chemo/regioselective manner to afford trisubstituted quinoxalines. Excellent regioselectivities (6:1 to 1:0) were achieved using [bis(trifluoroacetoxy)iodo]benzene and [bis(trifluoroacetoxy)iodo]pentafluorobenzene as annulation catalysts.
Collapse
Affiliation(s)
- Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ren Takehara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Kasumi Miura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ryota Ito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| |
Collapse
|
9
|
Li T, Zhu X, Jiang H, Wang Y, Zheng N, Peng T, Gao R, Shi L, Hao X, Song M. Pd‐catalyzed decarboxylative [3 + 2] cycloaddition: Assembly of highly functionalized spirooxindoles bearing two quaternary centers. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tiantian Li
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xinju Zhu
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Hui Jiang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Yanong Wang
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Nan Zheng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics Peking University Shenzhen Graduate School Shenzhen China
| | - Tian Peng
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Rui Gao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Linlin Shi
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Xin‐Qi Hao
- College of Chemistry ZhengZhou University Zhengzhou China
| | - Mao‐Ping Song
- College of Chemistry ZhengZhou University Zhengzhou China
| |
Collapse
|
10
|
Borah B, Chowhan LR. Recent advances in the transition-metal-free synthesis of quinoxalines. RSC Adv 2021; 11:37325-37353. [PMID: 35496411 PMCID: PMC9043781 DOI: 10.1039/d1ra06942j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 01/04/2023] Open
Abstract
Quinoxalines, also known as benzo[a]pyrazines, constitute an important class of nitrogen-containing heterocyclic compounds as a result of their widespread prevalence in natural products, biologically active synthetic drug candidates, and optoelectronic materials. Owing to their importance and chemists' ever-increasing imagination of new transformations of these products, tremendous efforts have been dedicated to finding more efficient approaches toward the synthesis of quinoxaline rings. The last decades have witnessed a marvellous outburst in modifying organic synthetic methods to create them sustainable for the betterment of our environment. The exploitation of transition-metal-free catalysis in organic synthesis leads to a new frontier to access biologically active heterocycles and provides an alternative method from the perspective of green and sustainable chemistry. Despite notable developments achieved in transition-metal catalyzed synthesis, the high cost involved in the preparation of the catalyst, toxicity, and difficulty in removing it from the final products constitute disadvantageous effects on the atom economy and eco-friendly nature of the transformation. In this review article, we have summarized the recent progress achieved in the synthesis of quinoxalines under transition-metal-free conditions and cover the reports from 2015 to date. This aspect is presented alongside the mechanistic rationalization and limitations of the reaction methodologies. The scopes of future developments are also highlighted.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
11
|
Luo L, Liu H, Zeng W, Hu W, Wang D. BTP‐Rh@g‐C
3
N
4
as an efficient recyclable catalyst for dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lan Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
- China Synchem Technology Co., Ltd. Bengbu China
| | - Wei Zeng
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Wenkang Hu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering Jiangnan University Wuxi China
| |
Collapse
|
12
|
Kabi AK, Gujjarappa R, Roy A, Sahoo A, Musib D, Vodnala N, Singh V, Malakar CC. Transition-Metal-Free Transfer Hydrogenative Cascade Reaction of Nitroarenes with Amines/Alcohols: Redox-Economical Access to Benzimidazoles. J Org Chem 2021; 86:14597-14607. [PMID: 34662119 DOI: 10.1021/acs.joc.1c01450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This report describes an efficient transition-metal-free process toward the transfer hydrogenative cascade reaction between nitroarenes and amines or alcohols. The developed redox-economical approach was realized using a combination of KOtBu and Et3SiH as reagents, which allows the synthesis of benzimidazole derivatives via σ-bond metathesis. The reaction conditions hold well over a wide range of substrates embedded with diverse functional groups to deliver the desired products in good to excellent yields. The mechanistic proposal has been depicted on the basis of a series of control experiments, mass spectroscopic evidence which is well supported by density functional theory (DFT) calculations with a feasible energy profile.
Collapse
Affiliation(s)
- Arup K Kabi
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Raghuram Gujjarappa
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Anupam Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Abhishek Sahoo
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| | - Nagaraju Vodnala
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India.,Department of Chemistry, Indian Institute of Technology Delhi, Multi-Storey Building, HauzKhas, New Delhi, 110016 India
| | - Virender Singh
- Department of Chemistry, Central University of Punjab, Bathinda, 151401 Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal - 795004, Manipur, India
| |
Collapse
|
13
|
Rock J, Garcia D, Espino O, Shetu SA, Chan-Bacab MJ, Moo-Puc R, Patel NB, Rivera G, Bandyopadhyay D. Benzopyrazine-Based Small Molecule Inhibitors As Trypanocidal and Leishmanicidal Agents: Green Synthesis, In Vitro, and In Silico Evaluations. Front Chem 2021; 9:725892. [PMID: 34604170 PMCID: PMC8484882 DOI: 10.3389/fchem.2021.725892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
World Health Organization (WHO) identified twenty tropical disease categories as neglected tropical diseases (NTDs). Chagas' disease (also known as American trypanosomiasis) and leishmaniasis are two major classes of NTDs. The total number of mortality, morbidity, and disability attributed each year due to these two categories of diseases in magnitudes is much higher than the so-called elite diseases like cancer, diabetes, AIDS, cardiovascular and neurodegenerative diseases. Impoverished communities around the world are the major victim of NTDs. The development of new and novel drugs in the battle against Chagas' disease and leishmaniasis is highly anticipated. An easy and straightforward on-water green access to synthesize benzopyrazines is reported. This ultrasound-assisted procedure does not require any catalyst/support/additive/hazardous solvents and maintains a high atom economy. A series of eleven benzopyrazines has been synthesized, and most of the synthesized compounds possess the drug-likeness following Lipinski's "Rule of 5". Benzopyrazines 3 and 4 demonstrated moderate leishmanicidal activity against L. mexicana (M378) strain. The selective lead compound 1 showed good leishmanicidal, and trypanocidal activities (in vitro) against both L. mexicana (M378) and T. cruzi (NINOA) strains compared to the standard controls. The in vitro trypanocidal and leishmanicidal activities of the lead compound 1 have been validated by molecular docking studies against four biomolecular drug targets viz. T. cruzi histidyl-tRNA synthetase, T. cruzi trans-sialidase, leishmanial rRNA A-site, and leishmania major N-myristoyl transferase.
Collapse
Affiliation(s)
- Jonathan Rock
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Daniel Garcia
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Omar Espino
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Shaila A. Shetu
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Manuel J. Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Campeche, México
| | - Rosa Moo-Puc
- Unidad Médica de Alta Especialidad, Instituto Mexicano Del Seguro Social, Mérida, México
| | - Navin B. Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Gujrat, India
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Debasish Bandyopadhyay
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX, United States
- School of Earth Environment and Marine Sciences (SEEMS), University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|