1
|
Xu X, Chang Y, Chen Y, Zhou L, Zhang F, Ma C, Che Q, Zhu T, Pfeifer BA, Zhang G, Li D. Biosynthesis of Atypical Angucyclines Unveils New Ring Rearrangement Reactions Catalyzed by Flavoprotein Monooxygenases. Org Lett 2024; 26:7489-7494. [PMID: 39194005 DOI: 10.1021/acs.orglett.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Six new angucycline structures, including spirocyclione A (1), which contains an unusual oxaspiro[5.5]undecane architecture, and its ring-A-cleaved product spirocyclione B (2), were discovered by heterologous expression of a type II polyketide biosynthetic gene cluster captured from a marine actinomycete strain Streptomyces sp. HDN155000. Three flavoprotein monooxygenases are confirmed to be responsible for the oxidative carbon skeleton rearrangements in the biosynthesis of compounds 1 and 2. The obtained compounds showed promising cytotoxicity against different types of cancer cells.
Collapse
Affiliation(s)
- Xiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Falei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266101, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266101, People's Republic of China
| |
Collapse
|
2
|
Gao J, Li L, Shen S, Ai G, Wang B, Guo F, Yang T, Han H, Xu Z, Pan G, Fan K. Cofactor-independent C-C bond cleavage reactions catalyzed by the AlpJ family of oxygenases in atypical angucycline biosynthesis. Beilstein J Org Chem 2024; 20:1198-1206. [PMID: 38887580 PMCID: PMC11181247 DOI: 10.3762/bjoc.20.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Biosynthesis of atypical angucyclines involves unique oxidative B-ring cleavage and rearrangement reactions, which are catalyzed by AlpJ-family oxygenases, including AlpJ, JadG, and GilOII. Prior investigations established the essential requirement for FADH2/FMNH2 as cofactors when utilizing the quinone intermediate dehydrorabelomycin as a substrate. In this study, we unveil a previously unrecognized facet of these enzymes as cofactor-independent oxygenases when employing the hydroquinone intermediate CR1 as a substrate. The enzymes autonomously drive oxidative ring cleavage and rearrangement reactions of CR1, yielding products identical to those observed in cofactor-dependent reactions of AlpJ-family oxygenases. Furthermore, the AlpJ- and JadG-catalyzed reactions of CR1 could be quenched by superoxide dismutase, supporting a catalytic mechanism wherein the substrate CR1 reductively activates molecular oxygen, generating a substrate radical and the superoxide anion O2 •-. Our findings illuminate a substrate-controlled catalytic mechanism of AlpJ-family oxygenases, expanding the realm of cofactor-independent oxygenases. Notably, AlpJ-family oxygenases stand as a pioneering example of enzymes capable of catalyzing oxidative reactions in either an FADH2/FMNH2-dependent or cofactor-independent manner.
Collapse
Affiliation(s)
- Jinmin Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Liyuan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Shijie Shen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Bin Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Fang Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Tongjian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Hui Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Beijing 101408, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| |
Collapse
|
3
|
Wang Y, Zhou L, Pan X, Liao Z, Qi N, Sun M, Zhang H, Ju J, Ma J. Metabolic Blockade-Based Genome Mining of Sea Anemone-Associated Streptomyces sp. S1502 Identifies Atypical Angucyclines WS-5995 A-E: Isolation, Identification, Biosynthetic Investigation, and Bioactivities. Mar Drugs 2024; 22:195. [PMID: 38786587 PMCID: PMC11122949 DOI: 10.3390/md22050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Marine symbiotic and epiphyte microorganisms are sources of bioactive or structurally novel natural products. Metabolic blockade-based genome mining has been proven to be an effective strategy to accelerate the discovery of natural products from both terrestrial and marine microorganisms. Here, the metabolic blockade-based genome mining strategy was applied to the discovery of other metabolites in a sea anemone-associated Streptomyces sp. S1502. We constructed a mutant Streptomyces sp. S1502/Δstp1 that switched to producing the atypical angucyclines WS-5995 A-E, among which WS-5995 E is a new compound. A biosynthetic gene cluster (wsm) of the angucyclines was identified through gene knock-out and heterologous expression studies. The biosynthetic pathways of WS-5995 A-E were proposed, the roles of some tailoring and regulatory genes were investigated, and the biological activities of WS-5995 A-E were evaluated. WS-5995 A has significant anti-Eimeria tenell activity with an IC50 value of 2.21 μM. The production of antibacterial streptopyrroles and anticoccidial WS-5995 A-E may play a protective role in the mutual relationship between Streptomyces sp. S1502 and its host.
Collapse
Affiliation(s)
- Yuyang Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Le Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
| | - Xiaoting Pan
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhangjun Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Haizhu District, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China
| |
Collapse
|
4
|
De BC, Yang C, Huang C, Zhang C, Zhang W. Non-enzymatic synthesis of C-methylated fluostatins: discovery and reaction mechanism. Org Biomol Chem 2024; 22:1152-1156. [PMID: 38214554 DOI: 10.1039/d3ob01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two C-methylated fluostatins (FSTs) B3 (1) and B4 (2) were synthesized from flavin-mediated nonenzymatic epoxide ring-opening reactions of FST C. The structures of 1 and 2 were elucidated by HRESIMS, NMR, and ECD spectroscopic analyses. A subsequent 13C labeling study demonstrated that the C-methyl groups of 1 and 2 were derived from DMSO and enabled the mechanistic proposal of a nonenzymatic C-methylation.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chunshuai Huang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Elsayed SS, van der Heul HU, Xiao X, Nuutila A, Baars LR, Wu C, Metsä-Ketelä M, van Wezel GP. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Commun Chem 2023; 6:281. [PMID: 38110491 PMCID: PMC10728087 DOI: 10.1038/s42004-023-01059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Angucyclines are type II polyketide natural products, often characterized by unusual structural rearrangements through B- or C-ring cleavage of their tetracyclic backbone. While the enzymes involved in B-ring cleavage have been extensively studied, little is known of the enzymes leading to C-ring cleavage. Here, we unravel the function of the oxygenases involved in the biosynthesis of lugdunomycin, a highly rearranged C-ring cleaved angucycline derivative. Targeted deletion of the oxygenase genes, in combination with molecular networking and structural elucidation, showed that LugOI is essential for C12 oxidation and maintaining a keto group at C6 that is reduced by LugOII, resulting in a key intermediate towards C-ring cleavage. An epoxide group is then inserted by LugOIII, and stabilized by the novel enzyme LugOV for the subsequent cleavage. Thus, for the first time we describe the oxidative enzymatic steps that form the basis for a wide range of rearranged angucycline natural products.
Collapse
Affiliation(s)
- Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Helga U van der Heul
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Xiansha Xiao
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Laura R Baars
- Department of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237, Qingdao, P.R. China
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, Tykistökatu 6, FIN-20014, Turku, Finland
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Yang C, Zhang L, Zhang W, Huang C, Zhu Y, Jiang X, Liu W, Zhao M, De BC, Zhang C. Biochemical and structural insights of multifunctional flavin-dependent monooxygenase FlsO1-catalyzed unexpected xanthone formation. Nat Commun 2022; 13:5386. [PMID: 36104338 PMCID: PMC9474520 DOI: 10.1038/s41467-022-33131-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Xanthone-containing natural products display diverse pharmacological properties. The biosynthetic mechanisms of the xanthone formation have not been well documented. Here we show that the flavoprotein monooxygenase FlsO1 in the biosynthesis of fluostatins not only functionally compensates for the monooxygenase FlsO2 in converting prejadomycin to dehydrorabelomycin, but also unexpectedly converts prejadomycin to xanthone-containing products by catalyzing three successive oxidations including hydroxylation, epoxidation and Baeyer-Villiger oxidation. We also provide biochemical evidence to support the physiological role of FlsO1 as the benzo[b]-fluorene C5-hydrolase by using nenestatin C as a substrate mimic. Finally, we resolve the crystal structure of FlsO1 in complex with the cofactor flavin adenine dinucleotide close to the “in” conformation to enable the construction of reactive substrate-docking models to understand the basis of a single enzyme-catalyzed multiple oxidations. This study highlights a mechanistic perspective for the enzymatic xanthone formation in actinomycetes and sets an example for the versatile functions of flavoproteins. The biosynthesis of xanthones has not been well documented. Here, the authors report that monooxygenase FlsO1 catalyzes three successive oxidations – hydroxylation, epoxidation and Baeyer–Villiger oxidation—to form the xanthone scaffold in actinomycetes.
Collapse
|
7
|
Flavin-enabled reductive and oxidative epoxide ring opening reactions. Nat Commun 2022; 13:4896. [PMID: 35986005 PMCID: PMC9391479 DOI: 10.1038/s41467-022-32641-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/08/2022] [Indexed: 12/23/2022] Open
Abstract
Epoxide ring opening reactions are common and important in both biological processes and synthetic applications and can be catalyzed in a non-redox manner by epoxide hydrolases or reductively by oxidoreductases. Here we report that fluostatins (FSTs), a family of atypical angucyclines with a benzofluorene core, can undergo nonenzyme-catalyzed epoxide ring opening reactions in the presence of flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NADH). The 2,3-epoxide ring in FST C is shown to open reductively via a putative enol intermediate, or oxidatively via a peroxylated intermediate with molecular oxygen as the oxidant. These reactions lead to multiple products with different redox states that possess a single hydroxyl group at C-2, a 2,3-vicinal diol, a contracted five-membered A-ring, or an expanded seven-membered A-ring. Similar reactions also take place in both natural products and other organic compounds harboring an epoxide adjacent to a carbonyl group that is conjugated to an aromatic moiety. Our findings extend the repertoire of known flavin chemistry that may provide new and useful tools for organic synthesis. Epoxide ring opening reactions are important in both biological processes and synthetic applications. Here, the authors show that flavin cofactors can catalyze reductive and oxidative epoxide ring opening reactions and propose the underlying mechanisms.
Collapse
|
8
|
Yan S, Zeng M, Wang H, Zhang H. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. J Med Chem 2022; 65:8735-8771. [PMID: 35766919 DOI: 10.1021/acs.jmedchem.2c00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micromonospora, one of the most important actinomycetes genera, is well-known as the treasure trove of bioactive secondary metabolites (SMs). Herein, together with an in-depth genomic analysis of the reported Micromonospora strains, all SMs from this genus are comprehensively summarized, containing structural features, bioactive properties, and mode of actions as well as their biosynthetic and chemical synthesis pathways. The perspective enables a detailed view of Micromonospora-derived SMs, which will enrich the chemical diversity of natural products and inspire new drug discovery in the pharmaceutical industry.
Collapse
Affiliation(s)
- Suqi Yan
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mingyuan Zeng
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Two New Phenylhydrazone Derivatives from the Pearl River Estuary Sediment-Derived Streptomyces sp. SCSIO 40020. Mar Drugs 2022; 20:md20070449. [PMID: 35877742 PMCID: PMC9323291 DOI: 10.3390/md20070449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Two new phenylhydrazone derivatives and one new alkaloid, penzonemycins A–B (1–2) and demethylmycemycin A (3), together with three known compounds including an alkaloid (4) and two sesquiterpenoids (5–6), were isolated from the Streptomyces sp. SCSIO 40020 obtained from the Pearl River Estuary sediment. Their structures and absolute configurations were assigned by 1D/2D NMR, mass spectroscopy and X-ray crystallography. Compound 1 was evaluated in four human cancer cell lines by the SRB method and displayed weak cytotoxicity in three cancer cell lines, with IC50 values that ranged from 30.44 to 61.92 µM, which were comparable to those of the positive control cisplatin. Bioinformatic analysis of the putative biosynthetic gene cluster indicated a Japp–Klingemann coupling reaction involved in the hydrazone formation of 1 and 2.
Collapse
|
10
|
Huang C, Yang C, Zhang W, Zhang L, Zhu Y, Zhang C. Discovery of an Unexpected 1,4-Oxazepine-Linked seco-Fluostatin Heterodimer by Inactivation of the Oxidoreductase-Encoding Gene flsP. JOURNAL OF NATURAL PRODUCTS 2021; 84:2336-2344. [PMID: 34384027 DOI: 10.1021/acs.jnatprod.1c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluostatins belong to the atypical angucyclinone aromatic polyketides featuring a distinctive tetracyclic benzo[a]fluorene skeleton. To understand the formation of the heavily oxidized A-ring in fluostatins, a flavin adenine dinucleotide-binding oxidoreductase-encoding gene flsP was inactivated, leading to the production of an unprecedented 1,4-oxazepine-linked seco-fluostatin heterodimer difluostatin I (7) and five new fluostatin-related derivatives, fluostatins T-X (8-12). Their structures were elucidated by mass spectrometry, nuclear magnetic resonance, X-ray diffraction analysis, and biosynthetic considerations. Difluostatin I (7) represents the first example with an A-ring-cleaved 3',4'-seco-fluostatin skeleton. The absolute configuration of fluostatin T (8) was determined by X-ray diffraction analysis. Fluostatin W (11) contains an uncommon isoxazolinone ring. These findings highlight the structural diversity of fluostatins.
Collapse
Affiliation(s)
- Chunshuai Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
11
|
Kim GS, Jang JP, Oh TH, Kwon M, Lee B, Lee JS, Ko SK, Hong YS, Ahn JS, Jang JH. Angucyclines containing β-ᴅ-glucuronic acid from Streptomyces sp. KCB15JA151. Bioorg Med Chem Lett 2021; 48:128237. [PMID: 34216745 DOI: 10.1016/j.bmcl.2021.128237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Two angucyclines, pseudonocardones D (1) and E (2), were isolated from Streptomyces sp. KCB15JA151. The planar structure was elucidated by comprehensive spectroscopic analysis. The absolute configuration of the sugar unit was determined based on the basis of coupling constants, ROESY, chemical derivatization and HPLC analysis. The biological activities of compounds 1 and 2 were examined by performing a computational target prediction, which led to tests of the antiestrogenic activity. The result suggested that compound 1 might be an ERα antagonist.
Collapse
Affiliation(s)
- Gil Soo Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jun-Pil Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Tae Hoon Oh
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byeongsan Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
12
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chlorahupetone A from Chloranthus henryi var. hupehensis.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|