1
|
Mizuguchi M, Nakagawa Y, Yokoyama T, Okada T, Fujii K, Takahashi K, Luan NNT, Nabeshima Y, Kanamitsu K, Nakagawa S, Yamakawa S, Ueda M, Ando Y, Toyooka N. Development of Benziodarone Analogues with Enhanced Potency for Selective Binding to Transthyretin in Human Plasma. J Med Chem 2024; 67:6987-7005. [PMID: 38670538 PMCID: PMC11089511 DOI: 10.1021/acs.jmedchem.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Transthyretin amyloidosis is a fatal disorder caused by transthyretin amyloid aggregation. Stabilizing the native structure of transthyretin is an effective approach to inhibit amyloid aggregation. To develop kinetic stabilizers of transthyretin, it is crucial to explore compounds that selectively bind to transthyretin in plasma. Our recent findings demonstrated that the uricosuric agent benziodarone selectively binds to transthyretin in plasma. Here, we report the development of benziodarone analogues with enhanced potency for selective binding to transthyretin in plasma compared to benziodarone. These analogues featured substituents of chlorine, bromine, iodine, a methyl group, or a trifluoromethyl group, at the 4-position of the benzofuran ring. X-ray crystal structure analysis revealed that CH···O hydrogen bonds and a halogen bond are important for the binding of the compounds to the thyroxine-binding sites. The bioavailability of benziodarone analogues with 4-Br, 4-Cl, or 4-CH3 was comparable to that of tafamidis, a current therapeutic agent for transthyretin amyloidosis.
Collapse
Affiliation(s)
- Mineyuki Mizuguchi
- Faculty
of Pharmaceutical Sciences, University of
Toyama, Toyama 930-0194, Japan
| | - Yusuke Nakagawa
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
| | - Takeshi Yokoyama
- Faculty
of Pharmaceutical Sciences, University of
Toyama, Toyama 930-0194, Japan
| | - Takuya Okada
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
- Faculty
of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Kanako Fujii
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Kanoko Takahashi
- Graduate
School of Pharma-Medical Sciences, University
of Toyama, Toyama 930-8555, Japan
| | - Nguyen Ngoc Thanh Luan
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
| | - Yuko Nabeshima
- Faculty
of Pharmaceutical Sciences, University of
Toyama, Toyama 930-0194, Japan
| | - Kayoko Kanamitsu
- Graduate
School of Pharmaceutical Sciences, the University
of Tokyo, Tokyo 113-0033, Japan
| | - Shinsaku Nakagawa
- Graduate
School of Pharmaceutical Sciences, Osaka
University, Osaka 565-0871, Japan
| | - Shiori Yamakawa
- Department
of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mitsuharu Ueda
- Department
of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yukio Ando
- Faculty
of Pharmaceutical Sciences, Nagasaki International
University, Sasebo 859-3298, Japan
| | - Naoki Toyooka
- Graduate
School of Innovative Life Science, University
of Toyama, Toyama 930-8555, Japan
- Faculty
of Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
2
|
Hong J, Li C, Zhao K, Wang X, Feng R, Chen X, Wei C, Gong X, Zheng F, Zheng C. Stereoselective Fluorosulfonylation of Vinylboronic Acids for ( E)-Vinyl Sulfonyl Fluorides with Copper Participation. Org Lett 2024; 26:2332-2337. [PMID: 38478713 DOI: 10.1021/acs.orglett.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A practical synthetic method for the synthesis of vinyl sulfonyl fluorides through copper-promoted direct fluorosulfonylation has been developed. The reaction of the vinylboronic acids with DABSO and then NFSI is performed under mild reaction conditions. This transformation efficiently affords aryl or alkyl vinyl sulfonyl fluorides with good reaction yields, exclusive E-configuration, broad substrate scope, excellent compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxiang Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ruilong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xifei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chongbin Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xinxin Gong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Feng Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
3
|
Mills LR, Gygi D, Simmons EM, Wisniewski SR, Kim J, Chirik PJ. Mechanistic Investigations of Phenoxyimine-Cobalt(II)-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross-Coupling. J Am Chem Soc 2023; 145:17029-17041. [PMID: 37490763 DOI: 10.1021/jacs.3c02103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The mechanism of phenoxyimine (FI)-cobalt-catalyzed C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling was studied using a combination of kinetic measurements and catalytic and stoichiometric experiments. A series of dimeric (FI)cobalt(II) bromide complexes, [(4-CF3PhFI)CoBr]2, [(4-OMePhFI)CoBr]2, and [(2,6-diiPrPhFI)CoBr]2, were isolated and characterized by 1H and 19F NMR spectroscopies, solution and solid-state magnetic susceptibility, electron paramagnetic resonance (EPR) spectroscopy, X-ray crystallography, and diffusion-ordered NMR spectroscopy (DOSY). One complex, [(4-CF3PhFI)CoBr]2, was explored as a single-component precatalyst for C(sp2)-C(sp3) Suzuki-Miyaura cross-coupling. Addition of potassium methoxide to [(4-CF3PhFI)CoBr]2 generated the corresponding (FI)cobalt(II) methoxide complex as determined by 1H and 19F NMR and EPR spectroscopies. These spectroscopic signatures were used to identify this compound as the resting state during catalytic C(sp2)-C(sp3) coupling. Variable time normalization analysis (VTNA) of in situ catalytic 19F NMR spectroscopic data was used to establish an experimental rate law that was first-order in a (FI)cobalt(II) precatalyst, zeroth-order in the alkyl halide, and first-order in an activated potassium methoxide-aryl boronate complex. These findings are consistent with turnover-limiting transmetalation that occurs prior to activation of the alkyl bromide electrophile. The involvement of boronate intermediates in transmetalation was corroborated by Hammett studies of electronically differentiated aryl boronic esters. Together, a cobalt(II)/cobalt(III) catalytic cycle was proposed that proceeds through a "boronate"-type mechanism.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David Gygi
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Xu L, Dong Z, Zhang Q, Deng N, Li SY, Xu HJ. Protoboration of Alkynes and Miyaura Borylation Catalyzed by Low Loadings of Palladium. J Org Chem 2022; 87:14879-14888. [PMID: 36223839 DOI: 10.1021/acs.joc.2c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The versions of Miyaura borylation and protoboration of alkynes catalyzed by low loadings of palladium (400 mol ppm = 0.04 mol %) have been developed. These transformations have a broad substrate scope, good functional-group compatibility, and gram-scale synthetic ability.
Collapse
|
5
|
Sakamoto R, Odagi M, Izumiseki A, Konuki K, Nagasawa K. Stereodivergent Synthesis of 1,3-Dienes via Protodeboronation of Homoallenylboronic Esters. J Org Chem 2022; 87:8084-8098. [PMID: 35671244 DOI: 10.1021/acs.joc.2c00744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinylboronic esters and allylboronic esters are well known to afford olefins by protodeboronation, and therefore homoallenylboronic esters should be similarly available as precursors for 1,3-dienes, but this strategy has not been well explored due to the limited availability of homoallenylboronic esters. Here, we describe a versatile synthesis of homoallenylboronic esters via lithiation-borylation and subsequent 1,2-rearrangement. The resulting homoallenylboronic esters were successfully converted into Z- and E-1,3-dienes by protodeboronation using Bu4NF and B(C6F5)3/PhOH, respectively.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Atsuto Izumiseki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kaname Konuki
- Research & Development Division, MicroBiopharm Japan Co., Ltd. 156 Nakagawara, Kiyosu, Aichi 452-0915, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
7
|
Zhao W, Zhang K, Huang J. Rh-Catalyzed Coupling of Aldehydes with Allylboronates Enables Facile Access to Ketones. Chemistry 2021; 28:e202103851. [PMID: 34967479 DOI: 10.1002/chem.202103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/09/2022]
Abstract
We present herein a novel strategy for the preparation of ketones from aldehydes and allylic boronicesters. This reaction involves the allylation of aldehydes with allylic boronicesters and the Rh-catalyzed chain-walking of homoallylic alcohols. The key to this successful development is the protodeboronation of alkenyl borylether intermediate via a tetravalent borate anion species in the presence of KHF 2 and MeOH. This approach features mild reaction conditions, broad substrate scope, and excellent functional group tolerance. Mechanistic studies also supported that the tandem allylation and chain-walking process was involved.
Collapse
Affiliation(s)
- Wanxiang Zhao
- Hunan University, chemistry, Yuelushan, Changsha, 410082, changsha, CHINA
| | | | - Jiaxin Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|