1
|
Chen XH, Li YM, Huang X, Cui HL. POCl 3/Sulfoxide-Promoted Synthesis of Indolizino[8,7- b]indoles. J Org Chem 2023; 88:16400-16409. [PMID: 37983977 DOI: 10.1021/acs.joc.3c01912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A mild chlorocyclization of pyrrole-tethered indoles has been realized using POCl3 as the chlorine source and tetramethylene sulfoxide as the promoter. A variety of chlorinated indolizino[8,7-b]indole derivatives have been constructed efficiently under this reaction system in moderate to good yields (19 examples, up to 93% yield).
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Yun-Meng Li
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| | - Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P.R. China
| |
Collapse
|
2
|
Ren H, Wang RA, Shi J, Song JR, Wu W, Chi Q, Zhang N. Electrochemical bromocyclization enables 3,5-diversification of heterocyclic indolines. Org Biomol Chem 2023; 21:7290-7294. [PMID: 37650516 DOI: 10.1039/d3ob00985h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Electrophilic bromocyclization reactions are widely used as key steps in the synthesis of diverse functionalized tetrahydrofuroindolines and hexahydropyrroloindolines. However, the direct dibromination variants of these reactions for the synthesis of 3,5-dibromoindolines remain undeveloped. Here, we report a protonic-acid-promoted electrooxidative protocol for the dearomative C3,C5-dibromocyclizations of tryptophol and tryptamine derivatives. This electrosynthetic approach, which enables direct selective construction of heterocyclic 3a,5a-dibromoindolines with inexpensive, non-hazardous NaBr as both the electrolyte and Br source, provides a convenient, practical method for the late-stage 3,5-diversification of heterocyclic indolines.
Collapse
Affiliation(s)
- Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Rui-An Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Wei Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| | - Ni Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, P. R. China
| |
Collapse
|
3
|
Luo X, Xu MM, Xu XP, Ji SJ. NBS-induced intramolecular annulation reactions for the divergent synthesis of fused- and spirocyclic indolines. Chem Commun (Camb) 2023; 59:6576-6579. [PMID: 37183546 DOI: 10.1039/d3cc01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An NBS-induced intramolecular annulation of 3-(1H-indol-3-yl)-N-alkoxypropanamide is described. The reactions proceed well and quickly under mild conditions with the help of a base. It was found that C2-substituents on the indole ring in 3-(1H-indol-3-yl)-N-alkoxypropanamide have a great influence upon the reaction. By using C2-methyl- and C2-phenyl-3-(1H-indol-3-yl)-N-alkoxypropanamide as templates, practical protocols for the divergent synthesis of fused- and spirocyclic indoline compounds were studied and established.
Collapse
Affiliation(s)
- Xian Luo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Innovation Center for Chemical Science, Soochow University, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
4
|
Manna A, Joshi H, Singh VK. Asymmetric Synthesis of Spiro-3,3'-cyclopropyl Oxindoles via Vinylogous Michael Initiated Ring Closure Reaction. J Org Chem 2022; 87:16755-16766. [PMID: 36468901 DOI: 10.1021/acs.joc.2c02402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel organocatalytic cascade approach for the synthesis of spiro-cyclopropyl oxindole derivatives has been developed. The methodology is based on asymmetric vinylogous Michael addition of 4-nitroisoxazole derivatives to N-Boc isatylidene malonates followed by intramolecular alkylation. Its remarkable stereocontrol, wide substrate scope, and scalability highlight this new developed strategy. Moreover, this work represents the first example of vinylogous Michael initiated ring closure (MIRC) reaction for the synthesis of chiral 3,3'-cyclopropyl oxindole.
Collapse
Affiliation(s)
- Abhijit Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Harshit Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
5
|
Xiao X, Chen XH, Wang XX, Wu FY, Cui HL. NBS-mediated synthesis of bromodihydroindolizino[8,7-b]indole derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|