1
|
Mondal M, Ghosh S, Lai D, Hajra A. C-H Functionalization of Heteroarenes via Electron Donor-Acceptor Complex Photoactivation. CHEMSUSCHEM 2024; 17:e202401114. [PMID: 38975970 DOI: 10.1002/cssc.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
C-H Functionalization of heteroarenes stands as a potent instrument in organic synthesis, and with the incorporation of visible light, it emerged as a transformative game-changer. In this domain, electron donor-acceptor (EDA) complex, formed through the pairing of an electron-rich substrate with an electron-accepting molecule, has garnered substantial consideration in recent years due to the related avoidance of the requirement of photocatalyst as well as oxidant. EDA complexes can undergo photoactivation under mild conditions and exhibit high functional group tolerance, making them potentially suitable for the functionalization of biologically relevant heteroarenes. This review article provides an overview of recent advancements in the field of C-H functionalization of heteroarenes via EDA complex photoactivation with literature coverage up to April, 2024.
Collapse
Affiliation(s)
- Madhusudan Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
2
|
Liang P, Chen S, Liu X, Teng S, Wang S. Base-promoted cascade vinylogous Michael/Michael addition of alkylidene succinimides for the construction of penta-substituted cyclopentanes. Org Biomol Chem 2024; 22:8832-8837. [PMID: 39405033 DOI: 10.1039/d4ob01455c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Herein, an efficient, base catalyzed cascade vinylogous Michael/Michael cycloaddition reaction of α-alkylidene succinimides and oxindole-derived pyrazolones has been successfully developed. A variety of highly functionalized cyclopentanes fused with spirooxindoles were obtained in good yields, with excellent diastereoselectivities and exclusive vinylogous site-selectivities. This strategy represents the first example of α-alkylidene succinimides serving as nucleophilic reagents to trigger a vinylogous cascade reaction.
Collapse
Affiliation(s)
- Peiyao Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Siyi Chen
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Xin Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Shenghan Teng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| | - Shoulei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China.
| |
Collapse
|
3
|
Dethe DH, Kumar V, Datta A. Ru(II)-Catalyzed C-H Alkylation of N-Benzyltriflamide with Maleimides: Synthesis of o-Succinimide Substituted Benzaldehydes. Chemistry 2024:e202401301. [PMID: 38864751 DOI: 10.1002/chem.202401301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
A ruthenium-catalyzed N-benzyltriflamide assisted C-H alkylation with maleimide followed by hydrolysis of in situ generated imine has been developed for the first time. This synthetic method results in the efficient synthesis of o-succinimide derivatives of benzaldehydes. This reaction involves less expensive and mild reaction conditions and shows excellent site selectivity and good functional group compatibility.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur, 208016, India
| | - Vimlesh Kumar
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur, 208016, India
| | - Arnadeep Datta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur, 208016, India
| |
Collapse
|
4
|
Wu Y, Shi G, Liu Y, Kong Y, Wu M, Wang D, Wu X, Shang Y, He X. A rhodium-catalyzed cascade C-H activation/annulation strategy for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines. Org Biomol Chem 2024; 22:3523-3532. [PMID: 38606489 DOI: 10.1039/d4ob00193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
A cascade annulation strategy triggered by rhodium(III)-catalyzed C-H activation has been reported for the expeditious assembly of pyrrolidinedione-fused 1,2-benzothiazines from free NH-sulfoximines with maleimides under mild conditions. Without the need for inert atmosphere protection, a broad range of sulfoximines with maleimides were well tolerated, producing diverse fused-thiazine derivatives in moderate to good yields. Additionally, the late-stage transformation of the target product demonstrated the potential synthetic value of this protocol.
Collapse
Affiliation(s)
- Yinsong Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Guanghao Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
- Jiangsu Xidi Pharmaceuticals Co., Ltd, Nantong, 226000, P. R. China
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
5
|
Saini RK, Borpatra PJ, Chaubey TN, Pandey SK. I 2-Mediated Site-Selective C-H Functionalization: Access to p-Amino-Substituted Unsymmetrical Benzils and Quinoxalines from Sulfoxonium Ylides. J Org Chem 2024; 89:5536-5545. [PMID: 38569000 DOI: 10.1021/acs.joc.3c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
An I2-mediated approach for selective C-H functionalization of unprotected aniline derivatives for synthesizing benzils and quinoxaline derivatives from sulfoxonium ylides has been described. Aniline derivatives and sulfoxonium ylides ornamented with different functional groups showed good compatibility. They afforded the corresponding products with moderate to high yields via a mild and simple procedure. Finally, we validated the practicality of this method by scaling up the reaction and further conversion of the synthesized derivatives into other valuable molecules.
Collapse
Affiliation(s)
- Rahul Kumar Saini
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India
| | - Paran J Borpatra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India
| | - Trayambek Nath Chaubey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India
| | - Satyendra Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India
| |
Collapse
|
6
|
Acharya SS, Patra S, Maharana R, Dash M, Barad LM, Parida BB. Recent advances in spirocyclization of maleimides via transition-metal catalyzed C-H activation. Org Biomol Chem 2024; 22:2916-2947. [PMID: 38497106 DOI: 10.1039/d3ob01904g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, the maleimide scaffold has received a great deal of attention in C-H activation. Several types of products can be constructed using maleimides as a coupling partner. Alkylation, alkenylation, annulation, dehydrogenative annulation and spirocyclization are various reactions shown by maleimides in C-H activation. Thus, the maleimide scaffold has been extensively studied in the last few years in C-H activation owing to its unique reactivity. Among the diverse class of reactions of maleimides, spirocyclization is a less explored reaction. The spirocycles, in particular the spirosuccinimides are interesting candidates in drug discovery and materials chemistry. Therefore the method of spirocyclization of maleimides via C-H activation becomes an important strategy for the synthesis of a diverse array of spirosuccinimides. This review summarizes the reports available in this field from 2015-2023 and also highlights the scopes and prospects of this method.
Collapse
Affiliation(s)
| | - Sagarika Patra
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Rojalini Maharana
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Manaswini Dash
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | - Liza Mama Barad
- Department of Chemistry, Berhampur University, Bhanja Bihar, Odisha-760007, India.
| | | |
Collapse
|
7
|
Zhou Q, Li B, Zhang X, Fan X. C-H activation-initiated spiroannulation reactions and their applications in the synthesis of spirocyclic compounds. Org Biomol Chem 2024; 22:2324-2338. [PMID: 38391295 DOI: 10.1039/d3ob02056h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Spirocyclic skeletons are prevalent in natural products, pharmaceuticals and organic functional materials. Meanwhile, transition-metal-catalyzed C-H activation reactions have demonstrated unparalleled advantages such as high efficiency, excellent atom-economy, good chemoselectivity and regioselectivity for the formation of target organic molecules. In recent years, C-H activation reactions have been creatively utilized in the synthesis of spirocyclic compounds. This review summarizes the most recent progress made in C-H activation-initiated spiroannulation reactions and their applications in the construction of structurally diverse and biologically valuable spirocyclic scaffolds by using alkynes, diazo compounds, maleimides, alkenes, quinones and cyclopropenones as the coupling partners.
Collapse
Affiliation(s)
- Qianting Zhou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Bin Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xinying Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuesen Fan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
8
|
Lai D, Bhattacharjee S, Mandal S, Ghosh S, Sahoo P, Sinha S, Hajra A. Iodine(III)-promoted oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent. Chem Commun (Camb) 2024; 60:2232-2235. [PMID: 38315091 DOI: 10.1039/d3cc05889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A metal-free protocol for oxidative carbotrifluoromethylation of maleimides with imidazopyridines and Langlois' reagent has been developed using (diacetoxyiodo)benzene (PIDA) as an oxidant. This three-component strategy enables one-step construction of 3,4-disubstituted maleimides in good yields with high functional group tolerance. Both experimental and theoretical studies support the proposed radical reaction mechanism.
Collapse
Affiliation(s)
- Dipti Lai
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Saurodeep Mandal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Subrata Sinha
- ISERC, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
9
|
Khan ZA, Singh VK. Synthesis of Spiroisoindolinones via Ru(II)-Catalyzed Spiroannulation of N-Acyl Ketimines with Aryl Isocyanates/Isothiocyanates through Aromatic C-H Bond Activation. J Org Chem 2023. [PMID: 38053308 DOI: 10.1021/acs.joc.3c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Herein, we disclose the first report on Ru(II)-catalyzed amidation/thioamidation of 3-hydroxy-3-arylisoindolinones with isocyanates/isothiocyanates, respectively. The reaction furnishes spiroisoindolinones via sequential C-H functionalization of ortho C-H bond followed by intramolecular cyclization in moderate to high yields (up to 94%). Moreover, the developed strategy is highly atom-economical and site-selective and shows diverse substrate generality. Also, synthesized spiroisoindolinones undergo several chemical transformations.
Collapse
Affiliation(s)
- Zahid Ahmad Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
10
|
Dahiya P, Yadav A, Peddinti RK. Spirocyclization and Michael addition of 3-benzylidene succinimides: route to spirocyclopentapyrrolidine-tetraones and benzylidene N-arylpyrrolidine-diones. Org Biomol Chem 2023; 21:9192-9199. [PMID: 37955962 DOI: 10.1039/d3ob01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Reactions of 3-benzylidene succinimides with 2-substituted 2-hydroxy-indane-1,3-diones and unsaturated pyrazolones are carried out under basic conditions to afford spirocyclized derivatives and Michael adducts, respectively, with high regio- and stereo-selectivities. The most notable aspect of the reaction is the ability of highly reactive benzylidene succinimide to act as both an electrophile and a nucleophile causing spirocyclization. The reaction proceeded under mild and metal-free conditions and products were isolated in good to high yields. The current strategy utilizes simple and easily accessible precursors, and provides functionally rich products of medicinal interest with two to four contiguous stereogenic centres and complete regioselectivity with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Pooja Dahiya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Anoop Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Rama Krishna Peddinti
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
11
|
Dutta A, Jeganmohan M. Palladium-Catalyzed Aerobic Oxidative Spirocyclization of Alkyl Amides with Maleimides via β-C(sp 3)-H Activation. Org Lett 2023; 25:6305-6310. [PMID: 37606577 DOI: 10.1021/acs.orglett.3c02182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
An efficient method for the synthesis of bicyclic spirodiamine molecules via β-C(sp3)-H bond activation of aliphatic amides, followed by cyclization with maleimides, has been developed. The reaction proceeds through an amide-directed β-C(sp3)-H bond activation of alkyl amides and subsequent cyclization with maleimides. The methodology is highly compatible with a wide variety of maleimides. Amides derived from biologically active aliphatic and fatty acids were also found to be highly compatible with the protocol. A palladacycle was synthesized and found to be the active intermediate in this reaction. A plausible reaction mechanism was also proposed to account for this spirocyclization.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
12
|
Mondal S, Bera R, Chowdhury D, Dana S, Baidya M. Redox-Neutral Ruthenium(II)-Catalyzed Enol-Directed Arene C-H Alkylation with Maleimides. Org Lett 2023; 25:70-75. [PMID: 36579895 DOI: 10.1021/acs.orglett.2c03858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An enol-assisted regioselective arene C-H alkylation with maleimides is developed under redox-neutral ruthenium(II) catalysis, offering a wide variety of valuable 3-aryl succinimides including amino acid embedded frameworks in good to excellent yields. The products were also aromatized to produce synthetically useful resorcinol-based biaryls. Mechanistic studies support an organometallic pathway with a reversible C-H metalation step for this reaction.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratnadeep Bera
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
13
|
Zeng C, He Y, Li Q, Dong L. Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
14
|
Phukon J, Jyoti Borah A, Gogoi S. Transition‐Metal‐Catalyzed Synthesis of Spiro Compounds through Activation and Cleavage of C−H Bonds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arun Jyoti Borah
- Department of Chemistry Gauhati University Guwahati 781014 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
15
|
Mondal K, Ghosh S, Hajra A. Transition-metal-catalyzed ortho C-H functionalization of 2-arylquinoxalines. Org Biomol Chem 2022; 20:7361-7376. [PMID: 36107011 DOI: 10.1039/d2ob01119k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, direct C-H bond activation and functionalization has become a prodigious and hot topic among synthetic organic chemists due to its step-economic nature and substantial synthetic versatility. On the other hand, quinoxaline, a fused bicycle of benzene and pyrazine, has omnipresent applications in medicinal-, industrial- and materials chemistry. The presence of the N-1 atom in 2-arylquinoxaline enables chelation formation with a metal catalyst leading to the formation of ortho-substituted products. In this review, all articles related to the ortho C-H bond functionalization of 2-arylquinoxalines published up to May 2022 are highlighted.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
16
|
Pu WY, Chen XY, Dong L. Rh(III)-catalyzed [5+1] spirocyclization to produce novel benzimidazole-incorporated spirosuccinimides. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
17
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
18
|
Ghosh S, Pyne P, Ghosh A, Hajra A. Ortho C-H Functionalizations of 2-Aryl-2H-Indazoles. CHEM REC 2022; 22:e202200158. [PMID: 35866505 DOI: 10.1002/tcr.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
C-H Functionalization is ubiquitously considered as a powerful, efficient and handy tool for installing various functional groups in complex organic heterocycles in an easier and step-economic way. Similarly, indazole is endowed as a potent heterocycle and is eminent for its profound impact in biological, medicinal and industrial chemistry. In this scenario, C-H functionalization at the selective ortho position of 2-arylindazole in assistance of a metal catalyst is also becoming an appealing approach in synthetic organic chemistry. This review addressed the recent findings and developments on ortho C-H functionalization of 2-aryl-2H-indazazoles with literature coverage extending from 2018 to May 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
19
|
Rakshit A, Dhara HN, Sahoo AK, Alam T, Patel BK. Pd(II)-Catalyzed Synthesis of Furo[2,3- b]pyridines from β-Ketodinitriles and Alkynes via Cyclization and N-H/C Annulation. Org Lett 2022; 24:3741-3746. [PMID: 35584095 DOI: 10.1021/acs.orglett.2c01472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A Pd(II)-catalyzed synthesis of furopyridines has been developed from β-ketodinitriles and alkynes via an unusual N-H/C annulation. The participation of both the nitrile groups and the concurrent construction of furan and pyridine rings through the formation of C-C, C═C, C-O, C-N, and C═N bonds are the important features. The synthetic applicability is further demonstrated through a series of postsynthetic alterations.
Collapse
Affiliation(s)
- Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
20
|
Direct C‐2 arylation of quinoxaline with arylhydrazine salts as arylation reagents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Wang WK, Tan HR, Wang NN, Ruan HL, Zhao SY. Copper(I)-Catalyzed Direct Oxidative Annulation of 1,3-Dicarbonyl Compounds with Maleimides: Access to Polysubstituted Dihydrofuran Derivatives. J Org Chem 2022; 87:2711-2720. [PMID: 35018783 DOI: 10.1021/acs.joc.1c02648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An efficient annulation method for the synthesis of polysubstituted dihydrofurans from 1,3-dicarbonyl compounds and maleimides is described. The reactions can afford furo[2,3-c]pyrrole derivatives with satisfactory yields. The developed strategy realizes the direct oxidative double C(sp3)-H functionalization in the presence of copper(I) salts and 2-(tert-butylperoxy)-2-methylpropane. Meanwhile, this protocol features a mild reaction condition and simple catalytic system. A reaction mechanism involving a single electron oxidation is also proposed.
Collapse
Affiliation(s)
- Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Hong-Ru Tan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Ning-Ning Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Hong-Li Ruan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
22
|
He Y, Zheng J, Dong L. Rh(III)-Catalyzed Cascade Annulation to Produce N-acetyl Chain of Spiropyrroloisoquinoline Derivatives. Org Biomol Chem 2022; 20:2293-2299. [PMID: 35234789 DOI: 10.1039/d2ob00137c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium(III)-catalyzed three-component multistep cascade spirocyclization approach was developed to synthesize nolvel N-acetyl chain of spiropyrroloisoquinoline derivatives using oxadiazoles as the directing group. This one-pot reaction also isolates aryloxadiazole...
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Majumder S, Ghosh S, Pyne P, Ghosh A, Ghosh D, Hajra A. Synthesis of Unsymmetrical Biheteroarenes via Dehydrogenative and Decarboxylative Coupling: a Decade Update. CHEM REC 2021; 22:e202100288. [PMID: 34970849 DOI: 10.1002/tcr.202100288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
The design and development of robust and efficient methods for installing one heterocycle with another is endowed as a ubiquitous and powerful synthetic strategy to access complex organic biheterocycles in recent days due to their pervasive applications in medicinal as well as material chemistry. This perspective presents an overview on the recent findings and developments for the synthesis of unsymmetrical biheteroarenes via dehydrogenative and decarboxylative couplings with literature coverage mainly extending from 2011 to 2021. For simplification of the readers, the article has been subcategorized based on the catalysts used in the reactions.
Collapse
Affiliation(s)
- Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore, 560027, Karnataka, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
24
|
Kumar R, Chandra D, Sharma U. Pd‐Catalyzed Atropselective C−H Olefination Promoted by a Transient Directing Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rohit Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Devesh Chandra
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Upendra Sharma
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
25
|
Yogananda Chary D, Aashritha K, Sridhar B, Subba Reddy BV. Rh(III)-catalyzed ortho-C–H bond functionalization of 2-arylquinoxalines with vinyl arenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Liu S, Shi Y, Xue C, Zhang L, Zhou L, Song M. Maleimides in Directing‐Group‐Controlled Transition‐Metal‐Catalyzed Selective C−H Alkylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuang‐Liang Liu
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Yajun Shi
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Cong Xue
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhang
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhou
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Mao‐Ping Song
- College of Chemistry, and Green Catalysis Center Zhengzhou University Kexue avenue 136 Zhengzhou 450001 P.R. China
| |
Collapse
|
27
|
Kang JY, An W, Kim S, Kwon NY, Jeong T, Ghosh P, Kim HS, Mishra NK, Kim IS. Synthesis of spirosuccinimides via annulative cyclization between N-aryl indazolols and maleimides under rhodium(III) catalysis. Chem Commun (Camb) 2021; 57:10947-10950. [PMID: 34604876 DOI: 10.1039/d1cc04599g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The rhodium(III)-catalyzed spiroannulation reaction between N-aryl indazol-3-ols and maleimides is described herein. The developed method is showcased by the construction of spirosuccinimides using bioactive molecule-linked and chemical probe-linked maleimides. Combined mechanistic investigations including the determination of an isolable rhodacycle complex aided the elucidation of a plausible reaction mechanism.
Collapse
Affiliation(s)
- Ju Young Kang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Na Yeon Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Taejoo Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Neeraj Kumar Mishra
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Nale SD, Thombal RS, Lee YR. Ruthenium(II)‐Catalyzed Direct
Ortho
Functionalization of 1‐Arylpyrazoles with Maleimides: A Condition Controlled Installation of Succinimides and Maleimides on Arenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sagar D. Nale
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Raju S. Thombal
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
29
|
Karishma P, Mandal SK, Sakhuja R. Rhodium‐Catalyzed Spirocyclization of Maleimide with
N
‐Aryl‐2,3‐dihydrophthalazine‐1,4‐dione to Access Pentacyclic Spiro‐Succinimides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81, SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| |
Collapse
|
30
|
Nipate DS, Shinde VN, Rangan K, Kumar A. Switchable regioselective hydroalkylation of 2-arylindoles with maleimides. Org Biomol Chem 2021; 19:4910-4921. [PMID: 34008673 DOI: 10.1039/d1ob00690h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A condition-based switchable regioselective hydroalkylation of 2-arylindoles with maleimides has been developed. The reaction in the presence of a Ru(ii)-catalyst resulted in hydroalkylation at the ortho-position of the C2-aryl ring via C-H activation whereas the reaction in the absence of the catalyst in TFE resulted in C3-hydroalkylation. Various functional groups both on the indole ring and on the 2-phenyl ring were tolerated and a wide range of hydroalkylated products were obtained in moderate to high (37-88%) yields.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
31
|
Pati BV, Sagara PS, Ghosh A, Mohanty SR, Ravikumar PC. Ruthenium-Catalyzed Cross Dehydrogenative Annulation of N-(7-Azaindole)benzamides with Maleimides: One-Step Access to Highly Functionalized Pyrroloisoquinoline. J Org Chem 2021; 86:6551-6565. [DOI: 10.1021/acs.joc.1c00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Prateep Singh Sagara
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175005, India
| | - Asit Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| | - Ponneri Chandrababu Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Jatani, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
32
|
Dethe DH, Beeralingappa NC, Uike A. Ruthenium-Catalyzed Oxidative Cross-Coupling Reaction of Activated Olefins with Vinyl Boronates for the Synthesis of ( E, E)-1,3-Dienes. J Org Chem 2021; 86:3444-3455. [PMID: 33541080 DOI: 10.1021/acs.joc.0c02823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An oxidative cross-coupling reaction between activated olefins and vinyl boronate derivatives has been developed for the highly stereoselective construction of synthetically useful (E,E)-1,3-dienes. The highlight of this reaction is that exclusive stereoselectivity (only E,E-isomer) was achieved from a base-free, ligand-free, and mild catalytic condition with a less expensive [RuCl2(p-cymene)]2 catalyst.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Amar Uike
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|