1
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Three-Component Tandem Cyclization for One-Pot Synthesis of Indole-Benzofuran Bis-Heterocycles. J Org Chem 2024; 89:17168-17175. [PMID: 39576131 DOI: 10.1021/acs.joc.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A one-pot, three-component synthesis of indole-benzofuran bis-heterocycles from terminal alkynes, salicylaldehydes, and indoles has been developed via copper-catalyzed tandem annulation. This catalytic system utilizes readily available starting materials, enabling predictable synthesis of indole-benzofuran bis-heterocycles with broad substrate versatility, excellent regiocontrol, and gram-scale amenability. The reaction proceeds via a sequential pathway involving A3 coupling, 1,4-conjugate addition, and 5-exo-dig cyclization.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
He X, Wang D, Liu Y, Wu M, Kong Y, Tang Q, Wang Y, Fan C, Shang Y. Synthesis of arene-functionalized fused heterocyclic scaffolds via a regioselective cascade 1,4-conjugate addition/5- exo-dig annulation strategy. Org Biomol Chem 2023; 21:9159-9172. [PMID: 37962430 DOI: 10.1039/d3ob01572f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Facile access to furan fused heterocyclic scaffolds through a regioselective cascade reaction of propargylamines with 4-hydroxy-2H-pyran-2-ones and 4-hydroxy-6-methylpyridin-2(1H)-one has been achieved. This cascade reaction presumably involves the formation of ortho-alkynyl quinone methide (o-AQM), 1,4-conjugate addition, followed by regioselective 5-exo-dig annulation, and a 1,3-H shift process. Moreover, the reaction provides a new and efficient method for the synthesis of highly sterically congested 3-phenolic furo[3,2-c]pyran-4-ones and furo[3,2-c]pyridin-4(5H)-ones by the formation of a furan ring from readily available starting materials in good to high yields (50-82%) with broad functional group compatibility in a single step. Significantly, the strategy described here is easily scalable and several useful synthetic transformations of the prepared arene-functionalized 4H-furo[3,2-c]pyran-4-ones were also performed.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Demao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yanan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Mengdi Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yangzilin Kong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yiping Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Chenli Fan
- School of Material Engineering, Wuhu Institute of Technology, Wuhu, 241002, People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
3
|
Sorabad GS, Yang DY. Lewis Acid-Catalyzed 1,4-Addition and Annulation of 4-Hydroxy-coumarins with o-Hydroxyphenyl Propargyl Amines: Entry to Regio-Selective Synthesis of Furano[3,2- c]coumarins and Pyrano[3,2- c]coumarins. J Org Chem 2023; 88:4730-4742. [PMID: 36935550 DOI: 10.1021/acs.joc.3c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A facile and regioselective Lewis acid-catalyzed cascade annulation of o-hydroxyphenyl propargyl amines with 4-hydroxycoumarin to afford furano[3,2-c]coumarin and pyrano[3,2-c]coumarin derivatives is reported. The reaction presumably proceeds by the conjugate addition of 4-hydroxycoumarin to the in situ-generated alkynyl o-quinone methide and is followed by intramolecular 5-exo-dig and 6-endo-dig annulation to form furano[3,2-c]coumarins and pyrano[3,2-c]coumarins, respectively. The prepared o-hydroxyl substituted pyrano[3,2-c]coumarins could be readily transformed into the corresponding coumarin-derived dioxabicycles by acid-mediated cyclization.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan
| | - Ding-Yah Yang
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan.,Graduate Program for Biomedical and Materials Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan
| |
Collapse
|
4
|
Yi MH, Jin HS, Wang RB, Zhao LM. Copper-Catalyzed Cascade Annulation of o-Hydroxyphenyl Propargylamines with Pyrazolin-5-ones to Access Pyrano[2,3- c]pyrazoles. J Org Chem 2022; 87:5795-5803. [PMID: 35442039 DOI: 10.1021/acs.joc.2c00122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient copper-catalyzed cascade annulation of o-hydroxyphenyl propargylamines and pyrazolin-5-ones is described. This methodology leads to the rapid assembly of a series of valuable pyrano[2,3-c]pyrazoles with good yields across a wide range of substrates in a simple fashion. This novel reaction involves the formation of alkynyl ortho-quinone methides, a 1,4-conjugate addition, and a subsequent 6-endo cyclization process. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Meng-Hao Yi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Ru-Bing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Zhang H, Wirth T. Oxidation of BINOLs by Hypervalent Iodine Reagents: Facile Synthesis of Xanthenes and Lactones. Chemistry 2022; 28:e202200181. [PMID: 35225370 PMCID: PMC9311707 DOI: 10.1002/chem.202200181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Xanthene derivatives have broad applications in medicines, fluorescent probes, dyes, food additives, etc. Therefore, much attention was focused on developing the synthetic methods to prepare these compounds. Binaphthyl‐based xanthene derivatives were prepared through the oxidation of BINOLs promoted by the hypervalent iodine reagent iodosylbenzene (PhIO). Nine‐membered lactones were obtained through a similar oxidative reaction when iodoxybenzene (PhIO2) was used. Additionally, one‐pot reactions of BINOLs, PhIO and nucleophiles such as alcohols and amines were also investigated to provide alkoxylated products and amides in good to excellent yields.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.,Lanzhou Petrochemical University of Vocational Technology, Lanzhou, 730060, P. R. China
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| |
Collapse
|