1
|
Wang Y, Jiang RY, Huang SJ, Xuan J, Zhou HP, Li F. Base-Promoted 1,4-Difunctionalization of [60]Fullerene with H-Phosphonates and Alkyl Bromides. Org Lett 2024; 26:10846-10852. [PMID: 39636709 DOI: 10.1021/acs.orglett.4c03977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The DBU-promoted three-component coupling reaction of H-phosphonates, [60]fullerene, and alkyl bromides has been developed as a facile and efficient protocol for the one-pot synthesis of various 1,4-(phosphonyl)(organo)[60]fullerenes. This method exhibits high regioselectivity at the 1,4-position on the [60]fullerene core and features a metal-free nature, easy operation, low cost, and a wide range of substrates.
Collapse
Affiliation(s)
- Yi Wang
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ruo-Yu Jiang
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Si-Jie Huang
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Jun Xuan
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Hong-Ping Zhou
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Fei Li
- Department of Chemistry, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, and Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
2
|
Pandey S, Singh A, Kushwaha AK, Singh S. Photocatalyzed Synthesis of a Schiff Base via C-N Bond Formation: Benzyl Alcohol as Sustainable Surrogates of Aryl Aldehydes. J Org Chem 2024; 89:12576-12582. [PMID: 39169829 DOI: 10.1021/acs.joc.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The advancement of photocatalytic techniques has enabled green chemical synthesis through visible-light-mediated photochemical oxidation under mild conditions. A novel approach under visible-light conditions was facilitated by eosin-Y for the reaction between substituted benzyl alcohols and anilines, resulting in the synthesis of diverse Schiff bases. This innovative method is emphasized for its environmentally friendly nature, lack of metal catalysts, cost-effectiveness, and nontoxic characteristics.
Collapse
Affiliation(s)
- Shikha Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005,India
| | - Aman Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005,India
| | - Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005,India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005,India
| |
Collapse
|
3
|
Huang J, Li X, Liu P, Wei Y, Liu S, Ma X. Selective Oxidative Cleavage of Benzyl C-N Bond under Metal-Free Electrochemical Conditions. Molecules 2024; 29:2851. [PMID: 38930916 PMCID: PMC11206264 DOI: 10.3390/molecules29122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
With the growing significance of green chemistry in organic synthesis, electrochemical oxidation has seen rapid development. Compounds undergo oxidation-reduction reactions through electron transfer at the electrode surface. This article proposes the use of electrochemical methods to achieve cleavage of the benzyl C-N bond. This method selectively oxidatively cleaves the C-N bond without the need for metal catalysts or external oxidants. Additionally, primary, secondary, and tertiary amines exhibit good adaptability under these conditions, utilizing water as the sole source of oxygen.
Collapse
Affiliation(s)
- Jiawei Huang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Xiaoman Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Ping Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Yu Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Shuai Liu
- Bingtuan Energy Development Institute, Shihezi University, Shihezi 832003, China
| | - Xiaowei Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| |
Collapse
|
4
|
Liu WJ, Hu ZC, Wu YX, Deng SH, Ren ZL, Dong ZB. Selective Construction of C-S/S-N Bonds from N-Substituted O-Thiocarbamates and Indoles under Transition-Metal-Free Conditions. J Org Chem 2024; 89:4098-4112. [PMID: 38421813 DOI: 10.1021/acs.joc.3c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A method for the selective construction of S-N/C(sp2)-S bonds using N-substituted O-thiocarbamates and indoles as substrates is reported. This protocol features good atom utilization, mild conditions, short reaction time, and wide substrate scope, which can provide a convenient path for the functionalization of indoles. In addition, the reaction could be scaled up on gram scale, showing potential application value in industry synthesis.
Collapse
Affiliation(s)
- Wen-Jie Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Chao Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu-Xi Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shi-Hao Deng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Borthakur I, Joshi A, Kumari S, Kundu S. Metal-Free Visible-Light Induced Oxidative Cleavage of C(sp 3 )-C, and C(sp 3 )-N Bonds of Nitriles, Alcohols, and Amines. Chemistry 2024; 30:e202303295. [PMID: 38116901 DOI: 10.1002/chem.202303295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Selective cleavage of unstrained (sp3 ) C-C/ C-N bonds under mild conditions is highly challenging due to the higher bond dissociation energy. A visible light mediated metal-free oxidative dehomologation of aryl acetonitriles, primary alcohols and diols to carboxylic acids via organophotocatalyzed C(sp3 )-CN, C(sp3 )-C(OH) bond cleavage is reported. Notably, this methodology was further extended towards selective synthesis of aldehydes via deamination of both primary as well as secondary amines. This mild protocol features wide array of substrate variation with excellent functional group tolerance, preparative-scale synthesis, and operational simplicity. Possible mechanisms for these transformations were demonstrated through a series of control experiments.
Collapse
Affiliation(s)
- Ishani Borthakur
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Abhisek Joshi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Saloni Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| | - Sabuj Kundu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India, 208016
| |
Collapse
|
6
|
Wei L, Bai W, Hu Z, Yang Z, Xu L. Visible light-induced metal-free chemoselective oxidative cleavage of benzyl C-heteroatom (N, S, Se) bonds utilizing organoboron photocatalysts. Chem Commun (Camb) 2023; 59:13344-13347. [PMID: 37872818 DOI: 10.1039/d3cc04073a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The oxidation process is widely explored and used to synthesize diverse organic chemicals. Herein, a unified metal-free photooxidative platform for the cleavage of C-heteroatom bonds has been developed. In these reactions, the aminoquinolate diarylboron (AQDAB) complex is utilized as the photocatalyst, instigating the oxidation process induced by visible light. The cleavage of C-heteroatom bonds can be achieved chemoselectively, affording the formal carbonylation product of C-N, C-S, and C-Se bonds. This method provides a channel for connecting amines, thiols, or selenides with the carbonyl compounds directly, broadening the potential applications of oxidation as a synthetic tool.
Collapse
Affiliation(s)
- Lanfeng Wei
- School of Safety Science and Engineering, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830000, China.
- Key Laboratory of Coal Resources and Green Mining in Xinjiang, Ministry of Education, Urumqi, Xinjiang 830000, China
| | - Wenbo Bai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Zhiyan Hu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Zhiyong Yang
- School of Safety Science and Engineering, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830000, China.
- Key Laboratory of Coal Resources and Green Mining in Xinjiang, Ministry of Education, Urumqi, Xinjiang 830000, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Chiang CW, Li HL, Lin TJ, Chen HC, Chou YH, Chou CJ. Versatile Synthesis of Symmetric and Unsymmetric Imines via Photoelectrochemical Catalysis: Application to N-Terminal Modification of Phenylalanine. Chemistry 2023; 29:e202301379. [PMID: 37434348 DOI: 10.1002/chem.202301379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
A strategy that combines electrochemical synthesis and photoredox catalysis was reported for the efficient synthesis of imines. This approach was demonstrated to be highly versatile in producing various types of imines, including symmetric and unsymmetric imines, by exploring the impact of different substituents on the benzene ring of the arylamine. Additionally, the method was specifically applied to modify N-terminal phenylalanine residues and was found to be successful in the photoelectrochemical cross-coupling reaction between NH2 -Phe-OMe and aryl methylamines, leading to the synthesis of phenylalanine-containing imines. Therefore, this technique would present a convenient and efficient platform for synthesizing imines, with promising applications in chemical biology, drug development, and organic synthesis.
Collapse
Affiliation(s)
- Chien-Wei Chiang
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Li Li
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Ting-Jun Lin
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Hung-Chi Chen
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Yi-Hsien Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| | - Chih-Ju Chou
- Department of Chemistry, Soochow University, No.70, Linhsi Road, Shihlin District, Taipei, 111002, Taiwan
| |
Collapse
|
8
|
Metal-free oxidative radical arylation of styrene with anilines to access 2-arylacetophenones and selective oxidation of amine. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Yamamoto Y, Kodama S, Nomoto A, Ogawa A. Innovative green oxidation of amines to imines under atmospheric oxygen. Org Biomol Chem 2022; 20:9503-9521. [PMID: 36218331 DOI: 10.1039/d2ob01421a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, the development of environmentally benign molecular construction methods has been of great importance, and especially, resource recycling, high atomic efficiency, and low environmental impact are in high demand. From this point of view, attention has also been focused on the development of one-pot synthesis of pharmaceuticals and functional molecules. Imines are excellent synthetic intermediates of these useful molecules, and the environmentally friendly oxidative synthesis of imines from amines has been energetically developed using oxygen (or air), which is abundantly available on the Earth, as an oxidant. This review focuses on the latest innovative and green oxidation systems of amines to imines under atmospheric oxygen, and their application to one-pot/eco-friendly and sustainable synthesis of pharmaceuticals and functional molecules. In particular, catalytic systems that activate molecular oxygen are categorized and described in detail as transition metal catalytic systems, photoirradiated catalytic systems, and organocatalytic systems.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
10
|
Malik AA, Ara T. Primary amines as new carbonyl surrogate in Kabachnik‐fields reaction: A new metal free one pot approach to synthesize α‐Aminophosphonates in water. ChemistrySelect 2022. [DOI: 10.1002/slct.202202900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Asif A Malik
- Department of Chemistry Organic Chemistry Division National Institute of Technology (NIT) Srinagar 190006 India
| | - Tabassum Ara
- Department of Chemistry Organic Chemistry Division National Institute of Technology (NIT) Srinagar 190006 India
| |
Collapse
|
11
|
Zhai J, Zhou B, Wu H, Jia S, Chu M, Han S, Xia W, He M, Han B. Photocatalytic Cleavage of C(sp 3 )-N Bond in Trialkylamines to Dialkylamines and Olefins. CHEMSUSCHEM 2022; 15:e202201119. [PMID: 35819857 DOI: 10.1002/cssc.202201119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Development of a new and green strategy for C(sp3 )-N bond cleavage is very interesting. Herein, photocatalytic cleavage of the C(sp3 )-N bond of trialkylamines was achieved, with concurrent formation of dialkylamines and olefins. It was found that a rationally designed 2D-Bi2 WO6 @1D-LaPO4 heterostructure was very efficient for the reaction due to its high light collection efficiency and unique catalytic properties. The strategy could be used for different trialkylamines, including triethylamine, tri-n-propylamine, and ethyl-di-isopropylamine. The mechanistic investigation indicated that the catalyst with heterostructure was not only favorable for charge carrier separation but also rendered excited electrons with high reduction capacity. This work opens a way for C(sp3 )-N bond cleavage of trialkylamines.
Collapse
Affiliation(s)
- Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Mengen Chu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
- Institute of Eco-Chongming, Shanghai, 202162, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
12
|
Chutimasakul T, Tirdtrakool W, Na Nakhonpanom P, Kreethatorn H, Jaruwatee P, Bunchuay T, Tantirungrotechai J. Efficient Synthesis of Imines by Oxidative Coupling Catalyzed by Ce‐Mn Oxide Microspheres. ChemistrySelect 2022. [DOI: 10.1002/slct.202203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Threeraphat Chutimasakul
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Nuclear Technology Research and Development Center Thailand Institute of Nuclear Technology (Public Organization) Nakhon Nayok 26120 Thailand
| | - Warinda Tirdtrakool
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Pakamon Na Nakhonpanom
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Hemmarat Kreethatorn
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Pattamaporn Jaruwatee
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| |
Collapse
|
13
|
Wei XM, Huang SL, Yang GY, Qi YF. Ru(N˄N)3‐Metalloligand Pillared Zr6–Organic Layers for Aerobic Photooxidation. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao-Mei Wei
- Beijing Institute of Technology School of Chemisty and Chemical Engineering CHINA
| | - Sheng-Li Huang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering No. 5 Yard, Zhong Guan Cun South Street. 100081 Beijing CHINA
| | - Guo-Yu Yang
- Beijing Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yong-Fang Qi
- Henan Open University College of Rural Revitalization CHINA
| |
Collapse
|
14
|
Thakur A, - M, Kumar I, Sharma U. Visible Light Induced Functionalization of C‐H Bonds: Opening of New Avenues in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankita Thakur
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Manisha -
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Inder Kumar
- CSIR-IHBT: Institute of Himalayan Bioresource Technology CSIR Chemical Technology Division INDIA
| | - Upendra Sharma
- CSIR-Institute of Himalayan Bioresource Technology Natural Product Chemistry and Process Development Division Palampur, IndiaPalampur 176061 Palampur INDIA
| |
Collapse
|
15
|
Torregrosa-Chinillach A, Chinchilla R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules 2022; 27:497. [PMID: 35056812 PMCID: PMC8780101 DOI: 10.3390/molecules27020497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
| | - Rafael Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain;
| |
Collapse
|
16
|
Ramalingam A, Samaraj E, Venkateshwaran S, Senthilkumar SM, Senadi GC. 1T-MoS 2 catalysed reduction of nitroarenes and a one-pot synthesis of imines. NEW J CHEM 2022. [DOI: 10.1039/d2nj00732k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expedient synthesis of aromatic amines and imines via the reduction of nitroaromatics using 1T-MoS2 as a heterogeneous catalyst.
Collapse
Affiliation(s)
- Ariprasanth Ramalingam
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| | - Elavarasan Samaraj
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| | - Selvaraj Venkateshwaran
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sakkarapalayam Murugesan Senthilkumar
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gopal Chandru Senadi
- Department of Chemistry, SRM Institute of science and technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
17
|
Kaur L, Kaur H, Kumar M, Bhalla V. Type I 'Lighted Metal-free' Photosensitizing Assemblies of Phenazine for Aerobic Oxidative Transformations. Chem Asian J 2021; 16:4179-4186. [PMID: 34739180 DOI: 10.1002/asia.202101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Indexed: 11/08/2022]
Abstract
Highly photostable supramolecular photosensitizing 'lighted metal-free' assemblies of DPZ-Th have been developed which show strong absorption in the visible region and excellent electron transportation potential from donor to acceptor units. The as-prepared assemblies of DPZ-Th activate aerial oxygen to generate Type I reactive oxygen species (ROS) under visible-light irradiation in mixed aqueous media. Owing to these properties, the as-prepared DPZ-Th assemblies exhibit high photocatalytic activity in catalyzing the aerobic oxidative coupling of benzylamines and synthesis of quinazolines. Various spectroscopic studies support the participation of Type I reactive species in the reaction mechanism. The 'pure' oxygen environment was not needed for carrying out these transformations and all the reactions proceed very well under aerial conditions to furnish the desired products in high yields.
Collapse
Affiliation(s)
- Lovjot Kaur
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Harpreet Kaur
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
18
|
Hu S, Feng H, Xi H, Meng Y, Li M, Huang L, Huang J. Copper-catalyzed deaminative alkynylation of secondary amines with alkynes: selectivity switch in the synthesis of diverse propargylamines. Org Chem Front 2021. [DOI: 10.1039/d1qo01240a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The copper-catalyzed selective deamination and alkynylation of the unsymmetrical secondary amines with terminal alkynes was reported with a broad substrate scope and excellent functional compatibility.
Collapse
Affiliation(s)
- Shengyun Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yuchen Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|