1
|
Wang Z, Huang S, Yin L, Wan J, Liu C, Liu T, Huang C. Chemodivergence in Fluorine Source-Controlled Cascade Reaction of Aryne Precursors to Synthesize Pyrrolo[3,4- b]indoles and 3-Arylated Maleimides. J Org Chem 2024; 89:5498-5510. [PMID: 38577943 DOI: 10.1021/acs.joc.3c02961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Reactions allowing chemodivergence prove to be attractive strategies in synthetic organic chemistry. We herein described a highly practical, transition-metal-free, highly regioselective and chemodivergent cascade reaction controlled by fluorine sources, which involved a [3 + 2] cycloaddition or C-arylation process between aryne precursors and 3-aminomaleimides. These two pathways led to a wide scope of structurally diverse pyrrolo[3,4-b]indoles (19 examples) and 3-arylated maleimides (25 examples) in good-to-excellent yields. Furthermore, the reaction could be scaled up, and several synthetic transformations were accomplished for the preparation of functionalized molecules and might provide new opportunities for the discovery of N-heterocyclic drugs.
Collapse
Affiliation(s)
- Zhuoyu Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Shuntao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Lu Yin
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Juan Wan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'An, Jiangxi 343009, P. R. China
| | - Teng Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'An, Jiangxi 343009, P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
2
|
Mondal A, Pal D, Phukan HJ, Roy M, Kumar S, Purkayastha S, Guha AK, Srimani D. Manganese Complex Catalyzed Sequential Multi-component Reaction: Enroute to a Quinoline-Derived Azafluorenes. CHEMSUSCHEM 2024; 17:e202301138. [PMID: 38096176 DOI: 10.1002/cssc.202301138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/06/2023] [Indexed: 01/09/2024]
Abstract
The development of innovative synthetic strategies for constructing complex molecular structures is the heart of organic chemistry. This significance of novel reactions or reaction sequences would further enhance if they permitted the synthesis of new classes of structural motifs, which have not been previously created. The research on the synthesis of heterocyclic compounds is one of the most active topics in organic chemistry due to the widespread application of N-heterocycles in life and material science. The development of a new catalytic process that employs first-row transition metals to produce a range of heterocycles from renewable raw materials is considered highly sustainable approach. This would be more advantageous if done in an eco-friendly and atom-efficient manner. Herein we introduce, the synthesis of various new quinoline based azafluorenes via sequential dehydrogenative multicomponent reaction (MCR) followed by C(sp3)-H hydroxylation and annulation. Our newly developed, Mn-complexes have the ability to direct the reaction in order to achieve a high amount of desired functionalized heterocycles while minimizing the possibility of multiple side reactions. We also performed a series of control experiments, hydride trapping experiments, reaction kinetics, catalytic intermediate and DFT studies to comprehend the detailed reaction route and the catalyst's function in the MCR sequence.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Hirak Jyoti Phukan
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Saurabh Kumar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | | | - Ankur Kanti Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati, 781001, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
3
|
Guan X, Li WJ, Shuai MS, Zhang M, Zhou CC, Fu XZ, Yang YY, Zhou M, He B, Zhao YL. Rh(III)-Catalyzed C7-Alkylation of Isatogens with Malonic Acid Diazoesters. J Org Chem 2024; 89:2984-2995. [PMID: 38334453 DOI: 10.1021/acs.joc.3c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Rh(III)-catalyzed C7-alkylation of isatogens (indolin-3-one N-oxides) with malonic acid diazoesters has been developed. This strategy utilizes oxygen anion on the N-oxide group of isatogens as a directing group and successfully achieves the synthesis of a series of C7-alkylated isatogens with moderate to good yields (48-86% yields). Moreover, the N-oxides of isatogens can not only serve as the simple directing group for C7-H bond cleavage but also be deoxidized for easy removal.
Collapse
Affiliation(s)
- Xiang Guan
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Wen-Jie Li
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Ming-Shan Shuai
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Mao Zhang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Chao-Chao Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Zhong Fu
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yuan-Yong Yang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Meng Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Bin He
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yong-Long Zhao
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
4
|
Shirisha T, Majhi S, Balasubramanian S, Kashinath D. Metal-free C(sp 3)-H functionalization (C-C and C-N bond formation) of 1,2,3,4-tetrahydroacridines using deep eutectic solvents as catalyst and reaction medium. Org Biomol Chem 2024; 22:1434-1440. [PMID: 38265125 DOI: 10.1039/d3ob01752d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Herein, we report a metal-free and efficient method for the C(sp3)-H functionalization of 1,2,3,4-tetrahydroacridines at the C4-position by the addition of azodicarboxylates (C-N bond) and maleimides (C-C bond) using deep eutectic solvents (DESs) at 80 °C. The C4-functionalized 1,2,3,4-tetrahydroacridines were achieved with high atom efficiency, precise regioselectivity, and yields ranging from 70-96%. The practicality of the developed method has been demonstrated through gram-scale synthesis. Also the green-metrics were calculated for the developed method and it was found that the metrics are near to the ideal values.
Collapse
Affiliation(s)
| | - Subir Majhi
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| | - Sridhar Balasubramanian
- Centre for X-ray Crystallography, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad-500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Dhurke Kashinath
- Department of Chemistry, National Institute of Technology, Warangal-506 004, India.
| |
Collapse
|
5
|
Parmar D, Sharma T, Sharma AK, Sharma U. Construction of unsymmetrical heterobiaryls via the Cp*Rh(III)-catalysed C-H/C-H coupling of heteroarenes. Chem Commun (Camb) 2023. [PMID: 37465886 DOI: 10.1039/d3cc03166g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, a concise method for the Rh(III)-catalyzed, directing-group-assisted C-H/C-H cross-coupling of N-heterocycles (quinolines, indolines, indoles, pyridines, pyrimidines, pyrazoles) with other heteroarenes (benzoxazoles, benzofurans, and thiophenes) is disclosed for the synthesis of unsymmetrical heterobiaryl compounds in good to excellent yields. A plausible catalytic cycle has been delineated based on experimental and computational mechanistic studies.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Akhilesh K Sharma
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, Tarragona 43007, Spain.
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Wang WK, Tan HR, Wang NN, Ruan HL, Zhao SY. Copper(I)-Catalyzed Direct Oxidative Annulation of 1,3-Dicarbonyl Compounds with Maleimides: Access to Polysubstituted Dihydrofuran Derivatives. J Org Chem 2022; 87:2711-2720. [PMID: 35018783 DOI: 10.1021/acs.joc.1c02648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An efficient annulation method for the synthesis of polysubstituted dihydrofurans from 1,3-dicarbonyl compounds and maleimides is described. The reactions can afford furo[2,3-c]pyrrole derivatives with satisfactory yields. The developed strategy realizes the direct oxidative double C(sp3)-H functionalization in the presence of copper(I) salts and 2-(tert-butylperoxy)-2-methylpropane. Meanwhile, this protocol features a mild reaction condition and simple catalytic system. A reaction mechanism involving a single electron oxidation is also proposed.
Collapse
Affiliation(s)
- Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Hong-Ru Tan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Ning-Ning Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Hong-Li Ruan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
7
|
Kumar R, Chandra D, Sharma U. Pd‐Catalyzed Atropselective C−H Olefination Promoted by a Transient Directing Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rohit Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Devesh Chandra
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Upendra Sharma
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
8
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Liu S, Shi Y, Xue C, Zhang L, Zhou L, Song M. Maleimides in Directing‐Group‐Controlled Transition‐Metal‐Catalyzed Selective C−H Alkylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuang‐Liang Liu
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Yajun Shi
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Cong Xue
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhang
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Liming Zhou
- College of Material and Chemical Engineering and Key Laboratory of Surface and Interface Science and Technology of Henan Province Zhengzhou University of Light Industry Kexue avenue 100 Zhengzhou 450001 P.R. China
| | - Mao‐Ping Song
- College of Chemistry, and Green Catalysis Center Zhengzhou University Kexue avenue 136 Zhengzhou 450001 P.R. China
| |
Collapse
|
10
|
Nale SD, Aslam M, Lee YR. Installation of Diverse Succinimides at C‐8 Position of Quinoline
N
‐Oxides via Rhodium(III)‐Catalyzed C−H Functionalization. ChemistrySelect 2021. [DOI: 10.1002/slct.202102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sagar D. Nale
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Mohammad Aslam
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|