1
|
Cabello MC, Bastos EL, El Seoud OAA, Baader WJ. Bright and long-lasting aqueous peroxyoxalate chemiluminescence in cellulose microspheres. Photochem Photobiol 2024. [PMID: 39560619 DOI: 10.1111/php.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024]
Abstract
Water decreases the brightness of the peroxyoxalate chemiluminescence partially due to the hydrolysis of the oxalate reagent. Here, we show that encapsulation of an oxalate ester and the fluorescent activator in microspheres of cellulose esters increases the emission intensity 30 times compared to the same reaction in water without encapsulation, whereas the emission intensity decay rate constants are considerably lower. Emission intensities, rate constants and chemiluminescence quantum yields increase with increasing hydrogen peroxide concentrations. These results expand the potential of application of chemiluminescence, contributing for the development of ultrasensitive analytical methods.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Departamento de Química Fundamental, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Erick L Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Omar A A El Seoud
- Departamento de Química Fundamental, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Melo DU, Bergonzini de Lima H, Reis RA, Boaro A, Gonçalves Costa Pinto AG, Monteiro Leite Ciscato LF, Homem-de-Mello P, Bartoloni FH. Chemiluminescence of a Firefly Luciferin Analogue Reveals that Formation of the Key Intermediate Responsible for Excited State Generation Occurs on a Fully Concerted Step. J Org Chem 2024; 89:345-355. [PMID: 38113466 DOI: 10.1021/acs.joc.3c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The chemiluminescence (CL) reaction of eight different 2-(4-hydroxyphenyl)-4,5-dihydrothiazole-4-carboxylate esters with an organic superbase and oxygen was investigated through a kinetic and computational study. These esters are all analogues to the luciferin substrate involved in efficient firefly bioluminescence. The kinetic data obtained from CL emission and light absorption assays were used in the context of linear free energy relationships (LFER); we obtained the Hammett reaction constant ρ = +1.62 ± 0.09 and the Brønsted constant βlg = -0.39 ± 0.04. These observations from LFER, together with activation parameters obtained from Arrhenius plots, suggest that the formation of the high-energy intermediate (HEI) 1,2-dioxetanone occurs via a concerted mechanism during the rate-determining step of the reaction. Calculations performed using density functional theory support a late transition state for HEI formation within the reaction mechanism pathway, which was described considering geometric parameters, Wiberg bond indices from natural bond order analysis, and the atomic charges derived from the electrostatic potential.
Collapse
Affiliation(s)
- Diego Ulysses Melo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Henrique Bergonzini de Lima
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Roberta Albino Reis
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Andreia Boaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | | | | | - Paula Homem-de-Mello
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
3
|
Gerbig D, Schreiner PR. Preparation and Spectroscopic Identification of the Cyclic CO 2 Dimer 1,2-Dioxetanedione. J Am Chem Soc 2023; 145:22341-22346. [PMID: 37812656 DOI: 10.1021/jacs.3c08894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We report the preparation and infrared spectroscopic identification of 1,2-dioxetanedione, which is one of the two possible cyclic dimers of carbon dioxide. We prepared this hitherto experimentally incompletely characterized species in a solid nitrogen matrix at 3 K from the reaction of oxalyl dichloride with the urea·hydrogen peroxide complex. Surprisingly, irradiation at 254 nm does not lead to its dissociation into carbon dioxide but rather yields cyclic carbon trioxide. We further assert our spectroscopic assignments by 18O isotopic labeling and high-level N-electron valence state perturbation theory and coupled-cluster computations. The successful isolation of 1,2-dioxetanedione supports its viability as the postulated high-energy intermediate in the well-known and ubiquitously exploited "peroxyoxalate" chemiluminescent system.
Collapse
Affiliation(s)
- Dennis Gerbig
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
4
|
Cabello MC, Bartoloni FH, Bastos EL, Baader WJ. The Molecular Basis of Organic Chemiluminescence. BIOSENSORS 2023; 13:bios13040452. [PMID: 37185527 PMCID: PMC10136088 DOI: 10.3390/bios13040452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Bioluminescence (BL) and chemiluminescence (CL) are interesting and intriguing phenomena that involve the emission of visible light as a consequence of chemical reactions. The mechanistic basis of BL and CL has been investigated in detail since the 1960s, when the synthesis of several models of cyclic peroxides enabled mechanistic studies on the CL transformations, which led to the formulation of general chemiexcitation mechanisms operating in BL and CL. This review describes these general chemiexcitation mechanisms-the unimolecular decomposition of cyclic peroxides and peroxide decomposition catalyzed by electron/charge transfer from an external (intermolecular) or an internal (intramolecular) electron donor-and discusses recent insights from experimental and theoretical investigation. Additionally, some recent representative examples of chemiluminescence assays are given.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Fernando H Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Erick L Bastos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil
| |
Collapse
|
5
|
Yang R, Ren Y, Dong W. A novel enzyme-free long-lasting chemiluminescence system based on a luminol functionalized β-cyclodextrin hydrogel for sensitive detection of H 2O 2 in urine and cells. J Mater Chem B 2023; 11:1320-1330. [PMID: 36655431 DOI: 10.1039/d2tb01813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel long-lasting chemiluminescent (CL) hydrogel (β-CD@luminol-Co2+) was synthesized by embedding luminol and cobalt ions (Co2+) into β-cyclodextrin (β-CD) through non-covalent interactions. Due to its porous structure and viscosity, the synthesized β-CD@luminol-Co2+ hydrogel exhibited long-lasting CL properties and can emit light for 12 h under both alkaline and neutral conditions. In addition, the CL intensities of β-CD@luminol-Co2+ were linear with the logarithm of the hydrogen peroxide (H2O2) concentration in the range of 1.0 × 10-11-1.0 × 10-7 M, and the limit of detection (LOD) was 0.63 × 10-11 M and 0.85 × 10-11 M under alkaline and neutral conditions, respectively. On this basis, an enzyme-free CL sensor based on β-CD@luminol-Co2+ was fabricated for the sensitive detection of H2O2 in human urine samples under alkaline conditions, and showed good accuracy and recovery. Since β-CD@luminol-Co2+ showed good CL properties under neutral conditions, it can be applied to detect H2O2 in cells. In order to prolong the emission wavelength of β-CD@luminol-Co2+ for better cell imaging, β-CD@luminol-FL-Co2+ was prepared by adding fluorescein (FL) to β-CD@luminol-Co2+. The as-prepared β-CD@luminol-FL-Co2+ also displayed long-lasting CL properties and showed a linear relationship with H2O2 concentrations. In addition, the maximum emission wavelength of β-CD@luminol-FL-Co2+ was 520 nm, which was red-shifted by 95 nm compared with β-CD@luminol-Co2+. The methyl thiazolyl tetrazolium (MTT) assay results and confocal microscopy images illustrated that β-CD@luminol-FL-Co2+ had low toxicity and can be taken up by A549 cells. Finally, β-CD@luminol-FL-Co2+ was successfully applied for CL imaging and detection of intracellular H2O2 in A549 cells under neutral conditions. This enzyme-free long-lasting CL system with high sensitivity can also be extended to real-time monitoring of H2O2in vivo.
Collapse
Affiliation(s)
- Rui Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| | - Yueran Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| | - Wenxuan Dong
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
6
|
Kagalwala HN, Lippert AR. Energy Transfer Chemiluminescent Spiroadamantane 1,2‐Dioxetane Probes for Bioanalyte Detection and Imaging. Angew Chem Int Ed Engl 2022; 61:e202210057. [DOI: 10.1002/anie.202210057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Husain N. Kagalwala
- Department of Chemistry Southern Methodist University Dallas TX 75275-0314 USA
| | | |
Collapse
|
7
|
Kagalwala HN, Lippert A. Energy Transfer Chemiluminescent Spiroadamantane 1,2‐Dioxetane Probes for Bioanalyte Detection and Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Alexander Lippert
- Southern Methodist University Chemistry 3215 Daniel Ave. 75275-0314 Dallas UNITED STATES
| |
Collapse
|
8
|
Cabello MC, Bartoloni FH, Baader WJ. An Update on General Chemiexcitation Mechanisms in Cyclic Organic Peroxide Decomposition and the Chemiluminescent Peroxyoxalate Reaction in Aqueous Media. Photochem Photobiol 2022; 99:235-250. [PMID: 35837818 DOI: 10.1111/php.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Four-membered ring peroxides are intimately linked to chemiluminescence and bioluminescence transformations, as high-energy intermediates responsible for electronically excited state formation. The synthesis of 1,2-dioxetanes and 1,2-dioxetanones enabled mechanistic studies on their decomposition occurring with the formation of electronically excited carbonyl products in the singlet or triplet state. The third member of this family, 1,2-dioxetanedione, has been postulated as the intermediate in the peroxyoxalate reaction, recently confirmed by kinetic studies on peroxalic acid derivatives. Several general chemiexcitation mechanisms have been proposed as model systems for the chemiexcitation step in efficient bioluminescence and chemiluminescence transformations. In this review article, we discuss the validity and efficiency of the most important chemiexcitation mechanisms, extended to aqueous media, where the efficiency is known to be drastically reduced, specifically in the peroxyoxalate reaction, highly efficient in anhydrous environment, but much less efficient in aqueous media. Mechanistic studies of this reaction will be discussed in diverse aqueous environments, with special attention to the catalysis involved in the thermal reaction leading to the formation of the high-energy intermediate and to the chemiexcitation mechanism, as well as emission quantum yields. Finally, several recent analytical and bioanalytical applications of the peroxyoxalate reaction in aqueous media will be given.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando H Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Wilhelm J Baader
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Solvent polarity influence on chemiexcitation efficiency of inter and intramolecular electron-transfer catalyzed chemiluminescence. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Iizuka D, Gon M, Tanaka K, Chujo Y. Acceleration of Chemiluminescence Reactions with Coumarin-modified Polyhedral Oligomeric Silsesquioxane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daisuke Iizuka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Fan W, Li L, Yuan J, Ma X, Jia J, Zhang X. Aggregation-Induced Emission Effect within Peroxyoxalate-Loaded Mesoporous Silica Nanoparticles for Efficient Harvest of Chemiluminescence Energy in Aqueous Solutions. Anal Chem 2021; 93:17043-17050. [PMID: 34907772 DOI: 10.1021/acs.analchem.1c03798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aggregation-induced emission (AIE) molecules that can avoid the aggregation-caused quenching (ACQ) effect and break the concentration limit have been widely used for biosensing. Similar to fluorescence dyes, AIE molecules can be chemiexcited simply by a peroxyoxalate-based chemiluminescence (CL) reaction, but the hydrolysis of peroxyoxalate is often a problem in an aqueous solution. Herein, we report an AIE effect within peroxyoxalate-loaded silica nanoparticles (PMSNs) for an efficient harvest of CL energy as well as alleviation of bis(2,4,5-trichloro-6-carbopentoxyphenyl) oxalate (CPPO) hydrolysis. Peroxyoxalate (i.e., CPPO) and AIE molecules (i.e., 1,2-benzothiazol-2-triphenylamino acrylonitrile, BTPA) were loaded together within the mesoporous silica nanoparticles (MSNs) to synthesize the BTPA-PMSN nanocomposite. The BTPA-PMSNs not only allowed CPPO to be dispersed well in an aqueous solution but also avoided the hydrolysis of CPPO. Meanwhile, the proximity between BTPA and CPPO molecules in the mesopores of MSNs facilitated the BTPA aggregate to harvest the energy from CL intermediates. Hence, the CL system of BTPA-PMSNs can work efficiently in aqueous solutions at a physiological pH. The CL quantum yield of the BTPA-PMSN system was measured to be 9.91 × 10-5, about 20 000-fold higher than that obtained in the rhodamine B (RhB, a typical ACQ dye)-PMSN system. Using BTPA-PMSNs for H2O2 sensing, a limit of detection (LOD) as low as 5 nM can be achieved, 1000-fold lower than that achieved in the RhB-PMSNs system. Due to the feasibility of working at a physiological pH, this CL system is also quite suitable for the detection of oxidase substrates such as glucose and cholesterol. This BTPA-PMSN CL system with the merits of high CL quantum yield at a physiological pH is appealing for biosensing.
Collapse
Affiliation(s)
- Wentong Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Lin Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jiajia Yuan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xuejuan Ma
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jia Jia
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xinfeng Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|