1
|
Xiao Y, Yang X, Li H, Yin Y, Du J, Liang J, Duan W, Yu L. Palladium-Catalyzed Coupling of Aryl Chlorides with Secondary Phosphines to Construct Unsymmetrical Tertiary Phosphines. Org Lett 2024; 26:10564-10569. [PMID: 39611234 DOI: 10.1021/acs.orglett.4c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The functionalization of the C-Cl bond in unactivated aryl chlorides under mild conditions presents a significant challenge. We disclose a general protocol for constructing both partially and entirely unsymmetrical tertiary phosphines through the Pd/keYPhos-catalyzed coupling of aryl chlorides with secondary phosphines under mild conditions. The reaction exhibits excellent functional group tolerance and broad substrate scopes. Furthermore, the rapid synthesis of ligands and luminescent compound sTPPs, alongside gram-scale systhesis, demonstrates the practical applicability of this method.
Collapse
Affiliation(s)
- Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Xun Yang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Ying Yin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Jing Liang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| |
Collapse
|
2
|
Zhang P, Wang Y, Deng Z, Gao J. Synthetic versatility: the C-P bond odyssey. Org Biomol Chem 2024. [PMID: 39569945 DOI: 10.1039/d4ob01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
C-P bond formation reactions have garnered significant attention due to the widespread presence of organophosphorus compounds in pharmaceuticals, phosphine-containing ligands, pesticides, and materials science. Consequently, various efficient methodologies have been established in recent decades for constructing C-P bonds. This review article traces the historical evolution of C-P bond research and explores the prospects of C-P bond formation. It contrasts biotechnological approaches with chemical synthesis, emphasizing the critical importance of precision and innovation in developing novel C-P structures. A forward-looking perspective is provided on the role of computational tools and machine learning in optimizing C-P bond synthesis and discovering new compounds. The article explores prospective avenues for reactions that form C-P bonds and advocates for enhanced interdisciplinary collaboration to propel scientific and technological advancements.
Collapse
Affiliation(s)
- Peng Zhang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yinan Wang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Dong L, Zhong B, Zhang YS, Yang JD, Cheng JP. Phosphination of aryl/alkyl bromides via Mn-mediated reductive C-P coupling. Chem Commun (Camb) 2024; 60:12549-12552. [PMID: 39380453 DOI: 10.1039/d4cc04750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Mn-mediated reductive cross-coupling of organic bromides with 2-bromo-1,3,2-diazaphospholene was developed for efficient construction of C-P bonds under mild conditions. Mechanistic studies suggested that bromides are activated by in situ formed bis-diazaphospholene via hybrid radical and polar mechanisms.
Collapse
Affiliation(s)
- Likun Dong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Bing Zhong
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yu-Shan Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Dong Yang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
4
|
Wang C, Tang M, Wang Y, Huang S, Xie LG. Photoinduced, Redox-Neutral Decyanative and Defluorinative Phosphination of (Hetero)Arenes. Org Lett 2024; 26:8154-8158. [PMID: 39283008 DOI: 10.1021/acs.orglett.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Triarylphosphines play a crucial role in organic synthesis as versatile components serving as ligands, catalysts, and reactants. This study introduces a metal-free, visible-light-induced method for the cross-coupling of cyanopyridines or polyfluoroarenes with diarylphosphines. This approach facilitates the formation of C(sp2)-P bonds through redox-neutral decyanative or defluorinative process, enabling the convenient synthesis of diverse triarylphosphines.
Collapse
Affiliation(s)
- Conghui Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yating Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Gallego-Gamo A, Reyes-Mesa D, Guinart-Guillem A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Site-selective and metal-free C-H phosphonation of arenes via photoactivation of thianthrenium salts. RSC Adv 2023; 13:23359-23364. [PMID: 37559697 PMCID: PMC10407877 DOI: 10.1039/d3ra04512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Aryl phosphonates are prevalent moieties in medicinal chemistry and agrochemicals. Their chemical synthesis normally relies on the use of precious metals, harsh conditions or aryl halides as substrates. Herein, we describe a sustainable light-promoted and site-selective C-H phosphonation of arenes via thianthrenation and the formation of an electron donor-acceptor complex (EDA) as key steps. The method tolerates a wide range of functional groups including biomolecules. The use of sunlight also promotes this transformation and our mechanistic investigations support a radical chain mechanism.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - David Reyes-Mesa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Axel Guinart-Guillem
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Roser Pleixats
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Carolina Gimbert-Suriñach
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Adelina Vallribera
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| | - Albert Granados
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Cerdanyola del Vallès 08193 Barcelona Spain
| |
Collapse
|
6
|
Roediger S, Leutenegger SU, Morandi B. Nickel-catalysed diversification of phosphine ligands by formal substitution at phosphorus. Chem Sci 2022; 13:7914-7919. [PMID: 35865908 PMCID: PMC9258342 DOI: 10.1039/d2sc02496a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
We report a diversification strategy that enables the direct substituent exchange of tertiary phosphines. Alkylated phosphonium salts, prepared by standard alkylation of phosphines, are selectively dearylated in a nickel-catalysed process to access alkylphosphine products via a formal substitution at the phosphorus center. The reaction can be used to introduce a wide range of alkyl substituents into both mono- and bisphosphines. We also show that the alkylation and dearylation steps can be conducted in a one-pot sequence, enabling accelerated access to derivatives of the parent ligand. The phosphine products of the reaction are converted in situ to air-stable borane adducts for isolation, and versatile derivatisation reactions of these adducts are demonstrated. Phosphine substituents can be exchanged by standard alkylation of a phosphine and a subsequent dearylation of the resulting phosphonium salt. A wide variety of alkyl groups can be introduced into both mono- and bidentate ligands using this method.![]()
Collapse
Affiliation(s)
- Sven Roediger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Sebastian U Leutenegger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
7
|
Catalyst‐Free Visible Light Mediated Synthesis of Unsymmetrical Tertiary Arylphosphines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Zhang L, Liu C, Yang L, Cao L, Liang C, Sun M, Ma Y, Cheng R, Ye J. Synthesis of triarylphosphines from arylammonium salts via one-pot transition-metal-free C-P coupling. Org Biomol Chem 2022; 20:3897-3901. [PMID: 35481827 DOI: 10.1039/d2ob00547f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A nucleophilic aromatic substitution (SNAr) reaction that allowed transition-metal-free C-P bond construction via C-N bond cleavage was developed. The coupling between aryltrimethylammonium salts and secondary phosphines from the in situ reduction of diarylphosphine oxides led to the formation of diverse triarylphosphines with various functional groups. This one-pot process was not only a pertinent SNAr precedent but also a favorable transition-metal-free alternative for C-P coupling.
Collapse
Affiliation(s)
- Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Liming Cao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chaoming Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Maolin Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. .,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Lei M, Chen X, Wang Y, Zhang L, Zhu H, Wang Z. Homogeneous and Heterogeneous Pd-Catalyzed Selective C-P Activation and Transfer Hydrogenation for "Group-Substitution" Synthesis of Trivalent Phosphines. Org Lett 2022; 24:2868-2872. [PMID: 35416672 DOI: 10.1021/acs.orglett.2c00844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A "group-substitution" synthesis of trivalent phosphines via a C-P activation of phosphonium salts is reported. The alkyl groups were introduced by alkylation of phosphines to form phosphonium salts. The "de-arylation" of phosphonium salts was achieved by C-P activation and transfer hydrogenation with homogeneous or heterogeneous Pd (0) catalysts. With this method, a series of trivalent phosphines were prepared from commercially available triarylphosphines. A chiral monophosphine ligand could be prepared from BINAP in a "de-phosphination" process.
Collapse
Affiliation(s)
- Ming Lei
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liran Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.,Xi'an Tieyi Binhe School, Xi'an 710038, China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Kumar P, Sharma U, Ananthnag GS. The Story of Acyl Phosphines: Synthesis, Reactivity, and Catalytic Applications. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Rajdhani College University of Delhi New Delhi India
| | - Urvashi Sharma
- Department of Chemistry, Rajdhani College University of Delhi New Delhi India
| | | |
Collapse
|
11
|
Tang J, Ling L, Yuan S, Luo M, Zeng X. Catalytic Cleavage of Unactivated C(aryl)-P Bonds by Chromium. Org Lett 2022; 24:1581-1586. [PMID: 35200020 DOI: 10.1021/acs.orglett.1c04325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe here the coupling to transform aryl phosphine derivatives by the cleavage of unactivated C(aryl)-P bonds with chromium catalysis, allowing us to achieve the reaction with alkyl bromides and arylmagnesium reagents under mild conditions. Mechanistic studies indicate that catalytic cleavage of unactivated C(aryl)-P bonds is due to the in situ formed reactive Cr, followed by transmetalation and coupling with alkyl bromides.
Collapse
Affiliation(s)
- Jinghua Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liang Ling
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shuqing Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|