1
|
Chi Z, Liao JB, Cheng X, Ye Z, Yuan W, Lin YM, Gong L. Asymmetric Cross-Coupling of Aldehydes with Diverse Carbonyl or Iminyl Compounds by Photoredox-Mediated Cobalt Catalysis. J Am Chem Soc 2024; 146:10857-10867. [PMID: 38587540 DOI: 10.1021/jacs.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The asymmetric cross-coupling of unsaturated bonds, hampered by their comparable polarity and reactivity, as well as the scarcity of efficient catalytic systems capable of diastereo- and enantiocontrol, presents a significant hurdle in organic synthesis. In this study, we introduce a highly adaptable photochemical cobalt catalysis framework that facilitates chemo- and stereoselective reductive cross-couplings between common aldehydes with a broad array of carbonyl and iminyl compounds, including N-acylhydrazones, aryl ketones, aldehydes, and α-keto esters. Our methodology hinges on a synergistic mechanism driven by photoredox-induced single-electron reduction and subsequent radical-radical coupling, all precisely guided by a chiral cobalt catalyst. Various optically enriched β-amino alcohols and unsymmetrical 1,2-diol derivatives (80 examples) have been synthesized with good yields (up to 90% yield) and high stereoselectivities (up to >20:1 dr, 99% ee). Of particular note, this approach accomplishes unattainable photochemical asymmetric transformations of aldehydes with disparate carbonyl partners without reliance on any external photosensitizer, thereby further emphasizing its versatility and cost-efficiency.
Collapse
Affiliation(s)
- Zhiyong Chi
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jia-Bin Liao
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Wang L, Zhang M, Teng H, Wang Z, Wang S, Li P, Wu J, Yang L, Xu G. Rationally introducing non-canonical amino acids to enhance catalytic activity of LmrR for Henry reaction. BIORESOUR BIOPROCESS 2024; 11:26. [PMID: 38647789 PMCID: PMC10992053 DOI: 10.1186/s40643-024-00744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
The use of enzymes to catalyze Henry reaction has advantages of mild reaction conditions and low contamination, but low enzyme activity of promiscuous catalysis limits its application. Here, rational design was first performed to identify the key amino acid residues in Henry reaction catalyzed by Lactococcal multidrug resistance Regulator (LmrR). Further, non-canonical amino acids were introduced into LmrR, successfully obtaining variants that enhanced the catalytic activity of LmrR. The best variant, V15CNF, showed a 184% increase in enzyme activity compared to the wild type, and was 1.92 times more effective than the optimal natural amino acid variant, V15F. Additionally, this variant had a broad substrate spectrum, capable of catalyzing reactions between various aromatic aldehydes and nitromethane, with product yielded ranging from 55 to 99%. This study improved enzymatic catalytic activity by enhancing affinity between the enzyme and substrates, while breaking limited types of natural amino acid residues by introducing non-canonical amino acids into the enzyme, providing strategies for molecular modifications.
Collapse
Affiliation(s)
- Lan Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Mengting Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Haidong Teng
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Zhe Wang
- Huadong Medicine Co., Ltd, Hangzhou, 310011, Zhejiang, China
| | - Shulin Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Pengcheng Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Gang Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
3
|
Xia Y, Ning Y, Liu M, Che FE. Recoverable PEG-Supported Amino Alcohol Ligand for Copper-Catalyzed Enantio- and syn-Selective Henry Reaction with Nitroethanol: Sustainable and Straightforward Access to Chiral syn-2-Nitro-1,3-Diols. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Wang H, Wan N, Miao R, He C, Chen Y, Liu Z, Zheng Y. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202205790. [DOI: 10.1002/anie.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Hui‐Hui Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Run‐Ping Miao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Cheng‐Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Zhi‐Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
5
|
Xia Y, Ye B, Liu M, Jiang M, Chen F. Continuous-Flow Synthesis of syn-2-Amino-1,3-diol via Catalytic Hydrogenation: A Vital Intermediate of (+)-Thiamphenicol and (+)-Florfenicol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Baijun Ye
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
6
|
Wan L, Kong G, Liu M, Jiang M, Cheng D, Chen F. Flow chemistry in the multi-step synthesis of natural products. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
7
|
Wang HH, Wan NW, Miao RP, He CL, Chen YZ, Liu ZQ, Zheng YG. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui-Hui Wang
- Zunyi Medical University School of Pharmacy CHINA
| | - Nan-Wei Wan
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Cheng-Li He
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Zhi-Qiang Liu
- Zhejiang University of Technology College of Biotechnology and Bioengineering Chaowang Rd. 18# 3100114 Hangzhou CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology College of Biotechnology and Bioengineering CHINA
| |
Collapse
|
8
|
Gao L, Lai L, Ye B, Liu M, Cheng D, Jiang M, Chen F. Continuous-flow synthesis of N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine (DTMPA) in a Micro fixed-bed reactor. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Li W, Jiang M, Liu M, Ling X, Xia Y, Wan L, Chen F. Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry 2022; 28:e202200700. [PMID: 35357730 DOI: 10.1002/chem.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Continuous flow synthetic technologies had been widely applied in the total synthesis in the past few decades. Fully continuous flow synthesis is still extremely focused on multi-step synthesis of complex natural pharmaceutical molecules. Thus, the development of fully continuous flow total synthesis of natural products is in demand but challenging. Herein, we demonstrated the first fully continuous flow approach towards asymmetric total synthesis of natural tetrahydroprotoberberine alkaloids, (-)-isocanadine, (-)-tetrahydropseudocoptisine, (-)-stylopine and (-)-nandinine. This method features a concise linear sequence involving four chemical transformations and three on-line work-up processing in an integrated flow platform, without any intermediate purification. The overall yield and enantioselectivity of this four-step continuous flow chemistry were up to 50 % and 92 %ee, respectively, in a total residence time of 32.5 min, corresponding to a throughput of 145 mg/h.
Collapse
Affiliation(s)
- Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Xu Ling
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| |
Collapse
|
10
|
Bastrakov M, Starosotnikov A. Recent Progress in the Synthesis of Drugs and Bioactive Molecules Incorporating Nitro(het)arene Core. Pharmaceuticals (Basel) 2022; 15:ph15060705. [PMID: 35745627 PMCID: PMC9228974 DOI: 10.3390/ph15060705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Aromatic nitro compounds play a unique role in the synthesis of drugs and pharmaceutically oriented molecules. This field of organic chemistry continues to be in demand and relevant. A significant number of papers are published annually on new general methods for the synthesis of nitrodrugs and related biomolecules. This review is an analysis of the literature on methods for the synthesis of both new and already-known aromatic and heteroaromatic nitrodrugs covering the period from 2010 to the present.
Collapse
|
11
|
Raji M, Le TM, Huynh T, Szekeres A, Nagy V, Zupkó I, Szakonyi Z. Divergent Synthesis, Antiproliferative and Antimicrobial Studies of 1,3-Aminoalcohol and 3-Amino-1,2-Diol Based Diaminopyrimidines. Chem Biodivers 2022; 19:e202200077. [PMID: 35349207 DOI: 10.1002/cbdv.202200077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
A series of novel diaminopyrimidines containing pinane moieties were synthesized via an efficient methodology starting from pinane-based aminoalcohols, aminodiols and 2,4-dichloropyrimidines. Bioassay tests demonstrated that compound 18a displayed much stronger antiproliferative activities against four human cancer cell lines (HeLa, Siha, MDA-MB-231, MCF-7 and A2780) than positive control cisplatin. In particular, compound 22a was found to be selective in inhibiting HeLa cell proliferation with cancer cell growth inhibition values higher than 95 %. Moreover, the in vitro screening of prepared compounds against different bacterial and fungal strains is reported. The results revealed that 12b and 17a, the most promising compounds, displayed selective inhibition for the Gram-positive bacteria (B. subtilis and S. aureus) with percent inhibition values ranging from 75 to 95 % at 10 μg/mL concentration. Both selective inhibition and the in vitro activity values demonstrated that these compounds have the potential to be developed into clinically important therapeutic choices for the treatment of infections caused by B. subtilis and S. aureus.
Collapse
Affiliation(s)
- Mounir Raji
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Eötvös u. 6, Hungary
| | - Tam Minh Le
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Eötvös u. 6, Hungary.,Stereochemistry Research Group of the Hungarian Academy of Sciences, 6720, Szeged, Eötvös u. 6, Hungary
| | - Thu Huynh
- Department of Microbiology, University of Szeged, 6726, Szeged, Közép fasor 52, Hungary
| | - András Szekeres
- Department of Microbiology, University of Szeged, 6726, Szeged, Közép fasor 52, Hungary
| | - Viktória Nagy
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, 6720, Szeged, Eötvös utca 6, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, 6720, Szeged, Eötvös utca 6, Hungary.,Interdisciplinary Center of Natural Products, University of Szeged, 6720, Szeged, Hungary
| | - Zsolt Szakonyi
- Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Eötvös u. 6, Hungary.,Interdisciplinary Center of Natural Products, University of Szeged, 6720, Szeged, Hungary
| |
Collapse
|