1
|
Mahale SD, Prasad A, Mhaske SB. Functionalized quinolones and isoquinolones via 1,2-difunctionalization of arynes: synthesis of antagonist agent AS2717638 and floxacin key intermediates. Chem Commun (Camb) 2024; 61:133-136. [PMID: 39620596 DOI: 10.1039/d4cc05671j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Quinolones and isoquinolones are privileged scaffolds in synthetic/medicinal chemistry and drug discovery due to their unique chemical structures and intrinsic properties. Herein, we reveal a transition-metal-free approach for their synthesis from the reaction of dimethyl-2-((phenylamino)methylene)malonate with aryne precursors under mild conditions. The substrate scope is broad, accommodating a wide range of functional groups. The synthetic utility of the developed protocol has been demonstrated in the total synthesis of the potent antagonist agent AS2717638 and key intermediates of floxacin congeners. The gram-scale experiments illustrate its synthetic potential.
Collapse
Affiliation(s)
- Sachin D Mahale
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anamika Prasad
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune-411008, India.
| | - Santosh B Mhaske
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Tomohara K, Kusaba S, Masui M, Uchida T, Nambu H, Nose T. Ammonium carboxylates in the ammonia-Ugi reaction: one-pot synthesis of α,α-disubstituted amino acid derivatives including unnatural dipeptides. Org Biomol Chem 2024; 22:6999-7005. [PMID: 39118586 DOI: 10.1039/d4ob00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Despite the remarkable developments of the Ugi reaction and its variants, the use of ammonia in the Ugi reaction has long been recognized as impractical and unsuccessful. Indeed, the ammonia-Ugi reaction often requires harsh reaction conditions, such as heating and microwave irradiation, and competes with the Passerini reaction, thereby resulting in low yields. This study describes a robust and practical ammonia-Ugi reaction protocol. Using originally prepared ammonium carboxylates in trifluoroethanol, the ammonia-Ugi reaction proceeded at room temperature in high yields and showed a broad substrate scope, thus synthesizing a variety of α,α-disubstituted amino acid derivatives, including unnatural dipeptides. The reaction required no condensing agents and proceeded without racemization of the chiral stereocenter of α-amino acids. Furthermore, using this protocol, we quickly synthesized a novel dipeptide, D-Leu-Aic-NH-CH2Ph(p-F), which exhibited a potent inhibitory activity against α-chymotrypsin with a Ki value of 0.091 μM.
Collapse
Affiliation(s)
- Keisuke Tomohara
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Satoru Kusaba
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Mana Masui
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisanori Nambu
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Graziano G, Stefanachi A, Contino M, Prieto-Díaz R, Ligresti A, Kumar P, Scilimati A, Sotelo E, Leonetti F. Multicomponent Reaction-Assisted Drug Discovery: A Time- and Cost-Effective Green Approach Speeding Up Identification and Optimization of Anticancer Drugs. Int J Mol Sci 2023; 24:6581. [PMID: 37047554 PMCID: PMC10095429 DOI: 10.3390/ijms24076581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Multicomponent reactions (MCRs) have emerged as a powerful strategy in synthetic organic chemistry due to their widespread applications in drug discovery and development. MCRs are flexible transformations in which three or more substrates react to form structurally complex products with high atomic efficiency. They are being increasingly appreciated as a highly exploratory and evolutionary tool by the medicinal chemistry community, opening the door to more sustainable, cost-effective and rapid synthesis of biologically active molecules. In recent years, MCR-based synthetic strategies have found extensive application in the field of drug discovery, and several anticancer drugs have been synthesized through MCRs. In this review, we present an overview of representative and recent literature examples documenting different approaches and applications of MCRs in the development of new anticancer drugs.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angela Stefanachi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Marialessandra Contino
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Antonio Scilimati
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| |
Collapse
|
4
|
Yazdian F, Ramezanpour S, Ayatollahi SA, Ghodrati A, Mahmoudzadeh K. An efficient multicomponent synthesis of fused pyrido-dipyrimidines containing tranexamic acid under green conditions. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Multicomponent reactions of ethyl trifluoroacetoacetate with carbonyl and nucleophilic reagents as a promising tool for organic synthesis. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Arsenov MA, Stoletova NV, Savel'yeva TF, Smol'yakov AF, Maleev VI, Loginov DA, Larionov VA. An asymmetric metal-templated route to amino acids with an isoquinolone core via a Rh(III)-catalyzed coupling of aryl hydroxamates with chiral propargylglycine Ni(II) complexes. Org Biomol Chem 2022; 20:9385-9391. [PMID: 36394513 DOI: 10.1039/d2ob01970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A general protocol for the asymmetric synthesis of artificial amino acids (AAs) comprising an isoquinolone skeleton was successfully elaborated via a straightforward Rh(III)-catalyzed C-H activation/annulation of various aryl hydroxamates with a series of robust chiral propargylglycine Ni(II) complexes derived from glycine (Gly), alanine (Ala) and phenylalanine (Phe) in a green solvent (methanol) under mild conditions (at room temperature under air). Notably, in the case of phenylalanine-derived complexes, the formation of unfavorable 4-substituted isoquinolone regioisomers was achieved by a catalyst control for the first time. The subsequent acidic decomposition of the obtained Ni(II) complexes provides the target unnatural α- and α,α-disubstituted AAs with an isoquinolone core in an enantiopure form.
Collapse
Affiliation(s)
- Mikhail A Arsenov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Nadezhda V Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Tat'yana F Savel'yeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation. .,Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Dmitry A Loginov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation. .,Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation. .,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
7
|
Li X, Wang Q, Zheng Q, Kurpiewska K, Kalinowska-Tluscik J, Dömling A. Access to Isoquinolin-2(1 H)-yl-acetamides and Isoindolin-2-yl-acetamides from a Common MCR Precursor. J Org Chem 2022; 87:14463-14475. [PMID: 36282152 PMCID: PMC9639002 DOI: 10.1021/acs.joc.2c01905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We achieved a divergent synthesis of isoquinolin-2(1H)-yl-acetamides (16 examples, up to 90% yields) and regioselective isoindolin-2-yl-acetamides (14 examples, up to 93% yields) in moderate to good yields by reacting various substituted ethanones or terminal alkynes with Ugi-4CR intermediates via an ammonia-Ugi-4CR/Copper(I)-catalyzed annulation sequence reaction. The same intermediate thus gives 2D distant but 3D closely related scaffolds, which can be of high interest in exploiting chemistry space on a receptor. The scopes and limitations of these efficient sequence reactions are described, as well as gram-scale synthesis.
Collapse
Affiliation(s)
- Xin Li
- Department
of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qian Wang
- Department
of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qiang Zheng
- Department
of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Katarzyna Kurpiewska
- Faculty
of Chemistry, Department of Crystal Chemistry and Crystal, Physics,
Biocrystallography Group, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Justyna Kalinowska-Tluscik
- Faculty
of Chemistry, Department of Crystal Chemistry and Crystal, Physics,
Biocrystallography Group, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Alexander Dömling
- Department
of Drug Design, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| |
Collapse
|
8
|
Xu R, Wang Z, Zheng Q, Patil P, Dömling A. A Bifurcated Multicomponent Synthesis Approach to Polycyclic Quinazolinones. J Org Chem 2022; 87:13023-13033. [PMID: 36095044 PMCID: PMC9552225 DOI: 10.1021/acs.joc.2c01561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The rapid synthesis of diverse substituted polycyclic
quinazolinones
was achieved by two orthogonal Ugi four-component reaction (Ugi-4CR)-based
protocols: the first two-step approach via an ammonia-Ugi-4CR followed
by palladium-catalyzed annulation; in the second approach, cyanamide
was used unprecedently as an amine component in Ugi-4CR followed by
an AIBN/tributyltin hydride-induced radical reaction. Like no other
method, MCR and cyclization could efficiently construct many biologically
interesting compounds with tailored properties in very few steps.
Collapse
Affiliation(s)
- Ruixue Xu
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Zefeng Wang
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Qiang Zheng
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Pravin Patil
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen 9713, AV, The Netherlands
| |
Collapse
|
9
|
Guo JM, Mao ZY, Liu CH, Yang SY, Wei BG. Palladium-Catalyzed Sequential Heck Reactions of Olefin-Tethered Aryl Iodides with Alkenes. J Org Chem 2022; 87:11838-11845. [PMID: 35981349 DOI: 10.1021/acs.joc.2c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient approach to functionalized (E)-3-cinnamyl-3-methyl-2,3-dihydrobenzofurans and (E)-(3-methyl-2,3-dihydrobenzofuran-3-yl)but-2-enones has been developed through a Pd-catalyzed one-pot cascade process involving two sequential Heck reactions, that is, an intramolecular Heck reaction of olefin-tethered aryl iodides and an intermolecular Heck reaction with substituted styrenes and α,β-unsaturated ketones. As a result, a series of desired products were obtained in moderate to good yields and with exclusive E-form selectivities.
Collapse
Affiliation(s)
- Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuo-Ya Mao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Hong Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shang-Ye Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
10
|
Qiu SB, Xiao JH, Chen PR, Ai KL, Pan KL, Chen JK, Chen YW, Pan PS. Robust Synthesis of Tetra‐Boronate Esters Analogues and the Corresponding Boronic Acids Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuo-Bei Qiu
- National Defense Medical Center Institute of Life Sciences TAIWAN
| | | | - Pin-Rui Chen
- Tamkang University Department of Chemistry TAIWAN
| | - Kuan-Lin Ai
- Tamkang University Department of Chemistry TAIWAN
| | - Kuan-Lin Pan
- Tamkang University Department of Chemistry TAIWAN
| | - Jen-Kun Chen
- National Health Research Institutes Institute of Biomedical Engineering and Nanomedicine TAIWAN
| | - Yi-Wei Chen
- Taipei Veterans General Hospital Oncology New Taipei City TAIWAN
| | - Po-Shen Pan
- Tamkang University Chemistry No.151, Yingzhuan Rd., Tamsui Dist., 25137 New Taipei City TAIWAN
| |
Collapse
|