1
|
Dash R, Panda SP, Bhati KS, Sharma S, Murarka S. Electrochemical C-H Alkylation of Azauracils Using N-(Acyloxy)phthalimides. Org Lett 2024; 26:7227-7232. [PMID: 39162265 DOI: 10.1021/acs.orglett.4c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We present an electrochemical alkylation of azauracils using N-(acyloxy)phthalimides (NHPI esters) as readily available alkyl radical progenitors under metal- and additive-free conditions. Several azauracils are shown to undergo alkylation with an array of NHPI esters (1°, 2°, 3°, and sterically congested), providing the desired products in good to excellent yields. This operationally simple method is robust, scalable, and suitable for both batch and flow setups.
Collapse
Affiliation(s)
- Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Kuldeep Singh Bhati
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Siddharth Sharma
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
2
|
Wang Y, Liu L, Deng P, Ji H. Photocatalyzed Acylation of Azauracil Derivatives with Aldehydes. J Org Chem 2024; 89:11083-11087. [PMID: 39044345 DOI: 10.1021/acs.joc.4c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A novel approach for the acylation of azauracil derivatives with aldehydes has been developed utilizing sodium decatungstate (NaDT) as a photocatalyst. This method demonstrates broad substrate tolerance and yields moderate to excellent outcomes. Notably, it aligns with green chemistry principles by eliminating oxidants, utilizing eco-friendly energy sources, and offering high scalability and operational simplicity.
Collapse
Affiliation(s)
- Yi Wang
- College of Pharmacy, Shaoyang University, Shaoyang 422099, China
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Peng Deng
- College of Pharmacy, Shaoyang University, Shaoyang 422099, China
| | - Hongtao Ji
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Huang XL, Zhang DL, Li Q, Xie ZB, Le ZG, Zhu ZQ. Visible-Light-Induced C-H Cyanoalkylation of Azauracils with Cycloketone Oxime Esters via Catalytic EDA Complex. Org Lett 2024; 26:3727-3732. [PMID: 38678575 DOI: 10.1021/acs.orglett.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photoexcitation electron donor-acceptor (EDA) complexes provide an effective approach to produce radicals under mild conditions, while the catalytic version of EDA complex photoactivation remains scarce. Herein, we report a visible-light-induced organophotocatalytic pathway for the cyanoalkylation of azauracils using inexpensive and readily available 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalytic electron donor. This synthetic method exhibits exceptional compatibility with various functional groups and presents 34 examples in high yields. The efficient cyanoalkylation offers an environmentally friendly and sustainable route toward enhancing the structural and functional diversity of azauracils.
Collapse
Affiliation(s)
- Xiao-Long Huang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Dong-Liang Zhang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Qing Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zong-Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhang-Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhi-Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
4
|
More DA, Shirsath SR, Muthukrishnan M. Metal- and Photocatalyst-Free, Visible-Light-Initiated C3 α-Aminomethylation of Quinoxalin-2(1 H)-ones via Electron Donor-Acceptor Complexes. J Org Chem 2023; 88:13339-13350. [PMID: 37651188 DOI: 10.1021/acs.joc.3c01249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We report a metal- and photocatalyst-free C3 α-aminomethylation of quinoxalin-2(1H)-ones with N-alkyl-N-methylanilines. The reaction proceeds through the formation of a photoactivated electron donor-acceptor complex between quinoxalin-2(1H)-ones and N-alkyl-N-methylanilines. The present method provides a mild and environmentally friendly protocol that exhibits good atom economy and excellent functional group tolerance to obtain a library of biologically significant C3 α-aminomethylated quinoxalin-2(1H)-ones in good yields.
Collapse
Affiliation(s)
- Devidas A More
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachin R Shirsath
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M Muthukrishnan
- CSIR-National Chemical Laboratory, Division of Organic Chemistry, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Panda SP, Hota SK, Dash R, Roy L, Murarka S. Photodecarboxylative C-H Alkylation of Azauracils with N-(Acyloxy)phthalimides. Org Lett 2023; 25:3739-3744. [PMID: 37184284 DOI: 10.1021/acs.orglett.3c01210] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We disclose a transition-metal-free NaI/PPh3-mediated direct C-H alkylation of azauracils using N-(acyloxy)pthalimides (NHPIs) as readily available alkyl surrogates under visible light irradiation. Detailed mechanistic studies reveal formation of a photoactivated electron donor-acceptor (EDA) complex between NaI/PPh3, TMEDA, and alkyl NHPI ester and establish the crucial role of TMEDA in increasing the activity of the photoredox system. The reaction demonstrates a broad scope, scalability, and appreciable functional group tolerance. A variety of azauracils are shown to undergo alkylation by primary, secondary, and tertiary NHPI esters under mild conditions, furnishing the desired products in good to excellent yields.
Collapse
Affiliation(s)
- Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar, Odisha 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| |
Collapse
|
6
|
Tan Y, Xuekun W, Han YP, Zhang Y, Zhang HY, Zhao J. Visible-Light-Induced Oxyalkylation of 1,2,4-Triazine-3,5(2 H, 4 H)-diones with Ethers via Oxidative Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:8551-8561. [PMID: 35731594 DOI: 10.1021/acs.joc.2c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and convenient method to synthesize 6-oxyalkylated 1,2,4-triazine-3,5(2H, 4H)-diones has been developed via visible-light-induced cross-dehydrogenative coupling reaction between 1,2,4-triazine-3,5(2H, 4H)-diones and ethers with a wide range of functional group tolerance. The present transformation employs the cheap and low-toxic 2-tert-butylanthraquinone as a metal-free photocatalyst and air as a green oxidant at room temperature. Moreover, this reaction can also be driven by sunlight as a clean energy resource. The synthetic utility of this method is further demonstrated by gram-scale reaction and application in the preparation of key intermediates of bioactive molecules.
Collapse
Affiliation(s)
- Yushi Tan
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Wu Xuekun
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|