1
|
Varala R, Seema V, Alam MM, Dubasi N, Vummadi RD. Iodoxybenzoic Acid (IBX) in Organic Synthesis: A Septennial Review. Curr Org Synth 2024; 21:607-664. [PMID: 37861006 DOI: 10.2174/0115701794263252230924074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023]
Abstract
This study reviews the oxidative applications of 2-iodoxybenzoic acid (IBX) in organic synthesis, focusing on C-H functionalization, hetero-hetero bond formations, ring cleavage reactions, dehydrogenation, heterocyclic ring formations, and some miscellaneous reactions in a comprehensive and critical way. It compiles the literature starting from mid-2015 to date.
Collapse
Affiliation(s)
- Ravi Varala
- Scrips Pharma, Mallapur, Hyderabad, 500 076, Telangana, India
| | - Vittal Seema
- Department of Chemistry, RGUKT Basar, Mudhole 504 107, Telangana, India
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Rama Devi Vummadi
- Department of Chemistry, Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad, 500075, Telangana, India
| |
Collapse
|
2
|
Dess-Martin Periodinane-Mediated Oxidative Coupling Reaction of Isoquinoline with Benzyl Bromide. Molecules 2023; 28:molecules28030923. [PMID: 36770590 PMCID: PMC9919522 DOI: 10.3390/molecules28030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Dess-Martin periodinane (DMP) is a broadly applicable oxidant in chemical synthesis. In this work, an efficient and convenient synthesis of N-substituted isoquinolinone derivatives mediated by DMP was achieved through the oxidative coupling reaction of functionalized isoquinoline with readily available benzyl bromide, which is a metal-free, mild, and practical method for synthesizing isoquinoline-1,3-dione or isoquinoline-1,3,4-trione derivatives in excellent yields. The H2O18-labeling experiment was performed to gain insight into the possible mechanism for this reaction.
Collapse
|
3
|
Farshadfar K, Gunawan N, Shiri F, Howard JK, Vaas APJP, Bissember AC, Yates BF, Smith JA, Ariafard A. Discovery of Periodinane Oxy-Assisted (POA) Oxidation Mechanism in the IBX-Controlled Oxidative Dearomatization of Pyrroles Mediated by Acetic Acid. J Org Chem 2022; 87:13280-13287. [PMID: 36162101 DOI: 10.1021/acs.joc.2c01923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 2-iodoxybenzoic acid (IBX)-controlled oxidative dearomatization of pyrroles occurs very slowly (or not all) in many organic solvents, including DMSO in which IBX is soluble. Interestingly, although IBX is only partially soluble in acetic acid, this solvent mediates the pyrrole oxidative dearomatization. With the aid of density functional theory (DFT) calculations, we have discovered a new mode of reactivity, termed the periodinane oxy-assisted (POA) oxidation mechanism, which explains this observation.
Collapse
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran.,Research Group of Computational Chemistry, Department of Chemistry and Materials Science, Aalto University, FI-00076 Aalto, Finland
| | - Nina Gunawan
- School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - James K Howard
- School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | | | - Alex C Bissember
- School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Brian F Yates
- School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Jason A Smith
- School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
4
|
Akyeva AY, Kansuzyan AV, Vukich KS, Kuhn L, Saverina EA, Minyaev ME, Pechennikov VM, Egorov MP, Alabugin IV, Vorobyev SV, Syroeshkin MA. Remote Stereoelectronic Effects in Pyrrolidone- and Caprolactam-Substituted Phenols: Discrepancies in Antioxidant Properties Evaluated by Electrochemical Oxidation and H-Atom Transfer Reactivity. J Org Chem 2022; 87:5371-5384. [PMID: 35363496 DOI: 10.1021/acs.joc.2c00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antioxidants are commonly evaluated via two main approaches, i.e., the ability to donate an electron and the ability to intercept free radicals. We compared these approaches by evaluating the properties of 11 compounds containing both antioxidant moieties (mono- and polyphenols) and auxiliary pharmacophores (pyrrolidone and caprolactam). Several common antioxidants, such as butylated hydroxytoluene (BHT), 2,3,5-trimethylphenol (TMP), quercetin, and dihydroquercetin, were added for comparison. The antioxidant properties of these compounds were determined by their rates of reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and their oxidation potentials from cyclic voltammetry. Although these methods test different chemical properties, their results correlate reasonably well. However, several exceptions exist where the two methods give opposite predictions! One of them is the different behavior of mono- and polyphenols: polyphenols can react with DPPH more than an order of magnitude faster than monophenols of a similar oxidation potential. The second exception stems from the size of a "bystander" lactam ring at the benzylic position. Although the phenols with a seven-membered lactam ring are harder to oxidize, the sterically nonhindered compounds react with DPPH about 2× faster than the analogous five-membered lactams. The limitations of computational methods, especially those based on a single parameter, are also evaluated and discussed.
Collapse
Affiliation(s)
- Anna Ya Akyeva
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia
| | | | - Katarina S Vukich
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia.,I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | | | | | | | - Mikhail P Egorov
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Stepan V Vorobyev
- Gubkin Russian State University of Oil and Gas, 65 Leninsky Prospect, 119991 Moscow, Russia
| | | |
Collapse
|