1
|
Guo SY, Liu YP, Huang JS, He LB, He GC, Ji DW, Wan B, Chen QA. Visible light-induced chemoselective 1,2-diheteroarylation of alkenes. Nat Commun 2024; 15:6102. [PMID: 39030211 PMCID: PMC11271625 DOI: 10.1038/s41467-024-50460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Visible-light photocatalysis has evolved as a powerful technique to enable controllable radical reactions. Exploring unique photocatalytic mode for obtaining new chemoselectivity and product diversity is of great significance. Herein, we present a photo-induced chemoselective 1,2-diheteroarylation of unactivated alkenes utilizing halopyridines and quinolines. The ring-fused azaarenes serve as not only substrate, but also potential precursors for halogen-atom abstraction for pyridyl radical generation in this photocatalysis. As a complement to metal catalysis, this photo-induced radical process with mild and redox neutral conditions assembles two different heteroaryl groups into alkenes regioselectively and contribute to broad substrates scope. The obtained products containing aza-arene units permit various further diversifications, demonstrating the synthetic utility of this protocol. We anticipate that this protocol will trigger the further advancement of photo-induced alkyl/aryl halides activation.
Collapse
Affiliation(s)
- Shi-Yu Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Peng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jin-Song Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gu-Cheng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Chen SY, Chang R, Lin ZX, Lin CW, Shen LC, Sue ACH, Tseng MC, Chu JH. Palladium-Mediated C(sp 3)-H Bond Activation of N-Methyl- N-(pyridin-2-yl)benzamide: Direct Arylation/Alkylation and Mechanistic Investigation. J Org Chem 2023. [PMID: 37276376 DOI: 10.1021/acs.joc.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we present a facile synthetic methodology to produce a range of N-(CH2-aryl/alkyl)-substituted N-(pyridin-2-yl)benzamides via palladium-mediated C(sp3)-H bond activation. The N-methyl-N-(pyridin-2-yl)benzamide precursor was first reacted with palladium(II) acetate in a stoichiometric manner to obtain the key dinuclear palladacycle intermediates, whose structures were elucidated by mass spectrometric, NMR spectroscopic, and X-ray crystallographic studies in detail. The subsequent C(sp3)-H bond functionalizations on the N-methyl group of the starting substrate show facile productions of the corresponding N-(CH2-aryl/alkyl)-substituted N-(pyridin-2-yl)benzamides with good functional group tolerance. A plausible mechanism was proposed based on density functional theory calculations in conjunction with kinetic isotope effect experiments. Finally, the synthetic transformation from the prepared N-(CH2-aryl)-N-(pyridin-2-yl)benzamides through debenzoylation to N-(CH2-aryl)-2-aminopyridine was successfully demonstrated.
Collapse
Affiliation(s)
- Shih-Yun Chen
- Department of Applied Science, National Taitung University, Taitung, Taiwan 95092, R.O.C
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Xin Lin
- Department of Applied Science, National Taitung University, Taitung, Taiwan 95092, R.O.C
| | - Chien-Wen Lin
- Department of Applied Science, National Taitung University, Taitung, Taiwan 95092, R.O.C
| | - Li-Ching Shen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300093, R.O.C
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mei-Chun Tseng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 115201, R.O.C
| | - Jean-Ho Chu
- Department of Applied Science, National Taitung University, Taitung, Taiwan 95092, R.O.C
| |
Collapse
|
3
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
4
|
Sani M, Zanda M. Recent Advances in the Synthesis and Medicinal Chemistry of SF5 and SF4Cl Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1845-9291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThis short review covers the most important advances published in the literature during the last five years, concerning the synthesis, chemical modifications, and applications of SF5 and SF4Cl compounds in medicinal/bioorganic chemistry and materials science.1 Introduction2 Methods for Incorporation/Manipulation of SF4Cl/SF5 Groups2.1 Nonaromatic SF5 Compounds via Direct Pentafluorosulfanylation of Alkenes and Alkynes2.2 SF4Cl- and SF5-Aryl/Heteroaryl Derivatives3 Synthesis of SF5/SF4Cl/SF4-Substituted Small Molecules3.1 Heterocycles3.2 Amines and Amino Acids3.3 α-SF5 ketones3.4 Miscellaneous Alkyl-, Alkenyl-, and Aryl-SF5 Compounds4 Medicinal/Biological Applications4.1 Anticancer Compounds4.2 Antibacterial and Antiparasitic Compounds4.3 Central Nervous System4.4 Miscellaneous Biological Activity5 Materials Science Applications6 Conclusion
Collapse
|
5
|
Previti S, Ettari R, Di Chio C, Ravichandran R, Bogacz M, Hellmich UA, Schirmeister T, Cosconati S, Zappalà M. Development of Reduced Peptide Bond Pseudopeptide Michael Acceptors for the Treatment of Human African Trypanosomiasis. Molecules 2022; 27:3765. [PMID: 35744891 PMCID: PMC9229991 DOI: 10.3390/molecules27123765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an endemic protozoan disease widespread in the sub-Saharan region that is caused by T. b. gambiense and T. b. rhodesiense. The development of molecules targeting rhodesain, the main cysteine protease of T. b. rhodesiense, has led to a panel of inhibitors endowed with micro/sub-micromolar activity towards the protozoa. However, whilst impressive binding affinity against rhodesain has been observed, the limited selectivity towards the target still remains a hard challenge for the development of antitrypanosomal agents. In this paper, we report the synthesis, biological evaluation, as well as docking studies of a series of reduced peptide bond pseudopeptide Michael acceptors (SPR10-SPR19) as potential anti-HAT agents. The new molecules show Ki values in the low-micro/sub-micromolar range against rhodesain, coupled with k2nd values between 1314 and 6950 M-1 min-1. With a few exceptions, an appreciable selectivity over human cathepsin L was observed. In in vitro assays against T. b. brucei cultures, SPR16 and SPR18 exhibited single-digit micromolar activity against the protozoa, comparable to those reported for very potent rhodesain inhibitors, while no significant cytotoxicity up to 70 µM towards mammalian cells was observed. The discrepancy between rhodesain inhibition and the antitrypanosomal effect could suggest additional mechanisms of action. The biological characterization of peptide inhibitor SPR34 highlights the essential role played by the reduced bond for the antitrypanosomal effect. Overall, this series of molecules could represent the starting point for further investigations of reduced peptide bond-containing analogs as potential anti-HAT agents.
Collapse
Affiliation(s)
- Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Rahul Ravichandran
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Marta Bogacz
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
| | - Ute A. Hellmich
- Institute of Organic Chemistry & Macromolecular Chemistry, Friedrich-Schiller-University of Jena, Humboldtstraße 10, 07743 Jena, Germany; (M.B.); (U.A.H.)
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Str. 9, 60438 Frankfurt, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudingerweg 5, 55128 Mainz, Germany;
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; (R.R.); (S.C.)
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Stagno d’Alcontres 31, 98166 Messina, Italy; (R.E.); (C.D.C.)
| |
Collapse
|
6
|
Tunable synthesis of furfurylamines or β-amino alcohols via Ru-catalyzed N–H functionalization using biomass-derived polyols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|