1
|
Jana R, Pradhan K. Shining light on the nitro group: distinct reactivity and selectivity. Chem Commun (Camb) 2024; 60:8806-8823. [PMID: 39081204 DOI: 10.1039/d4cc02582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The nitro moiety is an indispensable functional group in organic synthesis due to its facile introduction and reduction to the corresponding amines for a plethora of organic transformations. Owing to its distinct electronegative and conventional properties, it has been used for activated aromatic nucleophilic substitution (SNAr) reactions, Smiles reactions, Henry reactions, acyl anion equivalents, etc. Recently, the excellent photochemical properties of nitroarenes have been rediscovered by several groups, and their untapped potential in organic synthesis under UV or visible light irradiation has been exploited. Photoexcited nitroarenes can undergo facile reduction to amines, azo-coupling, metal-free reductive C-N coupling with boronic acids via a 1,2-boronate shift, hydrogen atom transfer (HAT), oxygen atom transfer for anaerobic oxidation of organic molecules, molecular editing via nitrene intermediates, denitrative coupling of β-nitrostyrene, radical α-alkylation of nitroalkanes, etc. They have also been used as a photolabile protecting group in medicinal chemistry and chemical biology applications. Here, we summarise the recent findings on visible-light-mediated transformations involving nitro-containing organic molecules.
Collapse
Affiliation(s)
- Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
2
|
Zhang Z, Sui A, Zhang X, Wang X, He X, Zhang B, Wu H. Organocatalytic Asymmetric Vinylogous Michael Addition of Electron-Deficient Aryl Alkane Nucleophiles to Enals. J Org Chem 2023. [PMID: 38015566 DOI: 10.1021/acs.joc.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report herein a protocol for an organocatalyzed asymmetric vinylogous Michael addition of aryl alkane nucleophiles with enals under base- and additive-free conditions. A series of allylic building blocks were obtained in 60%-93% yield and 88-99% ee with 20 mol % diphenylprolinol silyl ether as catalyst. This protocol has advantages such as excellent chemoselectivity and regioselectivity, good tolerance of functionalities, and simple reaction conditions.
Collapse
Affiliation(s)
- Zhiguang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ao Sui
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaomin Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xu Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xinyi He
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bingzhu Zhang
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
3
|
Díaz-Salazar H, Rodríguez-Colín JC, Vazquez-Chavez J, Hernández-Rodríguez M. The Chameleonic Nature of the Nitro Group Applied to a Base-Promoted Cascade Reaction To Afford Indane-Fused Dihydrofurans. J Org Chem 2023; 88:8150-8162. [PMID: 37341114 DOI: 10.1021/acs.joc.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
We disclose a Michael/Conia-ene/SN2 cascade reaction for the synthesis of Indane-fused dihydrofurans from 1,3-dicarbonyl compounds and 2-alkynylnitrostyrenes promoted by potassium carbonate in DMSO at room temperature. In this reaction, the nitro group has a chameleonic role, first as an electron-withdrawing group for the Michael addition, then the nitronate behaves as a nucleophile, and finally, the allylic nitro acts as a leaving group. The product is obtained as a single diastereomer, affording up to 82% with 1,3-keto esters and 58% with 1,3-diketones. Furthermore, DFT calculations of the reaction mechanism explained the chemoselective addition of the nitronate over the enolate to the unactivated triple bond, with the enolate addition being highly endothermic.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., México
| | - Juan Carlos Rodríguez-Colín
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., México
| | - Josué Vazquez-Chavez
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., México
| | - Marcos Hernández-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Cd. Mx., México
| |
Collapse
|
4
|
Antonova Y, Nelyubina Y, Ioffe SL, Sukhorukov A, Tabolin A. Ring closure of nitroalkylmalonates for the synthesis of isoxazolines under the acylation conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulia Antonova
- N. D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| | - Yulia Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences RUSSIAN FEDERATION
| | | | | | - Andrey Tabolin
- N. D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
5
|
Feng M, Jiang H, Huang L. Silver-mediated annulation between 5- H-1,2,3-thiadiazoles and 1,3-dicarbonyl compounds to construct polysubstituted furans. Org Chem Front 2022. [DOI: 10.1039/d2qo01224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of polysubstituted furans by Ag(i)-mediated annulation between 5-H-1,2,3-thiadiazoles and 1,3-dicarbonyl compounds is reported.
Collapse
Affiliation(s)
- Mengxia Feng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Zhang C, Zhang XQ, Nie Y, Wang C, Xu T, Zhang J, Bai L, Feng C, Wang Y. Gold-catalyzed formal (3 + 2) and (4 + 2) cycloaddition reactions using propiolates: assembly of 2,3-dihydrofurans and 3,4-dihydropyrans via a multistep cascade process. Org Chem Front 2022. [DOI: 10.1039/d2qo01084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold-catalyzed formal dipolar cycloaddition reaction was developed using polarized alkynes as dipolarophiles and butenediol or pentenediol derivatives as formal dipoles. Silyl groups were used to solve the selectivity issue of unsymmetrical diols.
Collapse
Affiliation(s)
- Congdi Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Xiao-Qian Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Yu Nie
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Chao Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Tianyi Xu
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Junjie Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| | - Lu Bai
- Instrumental Analysis Center, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Chao Feng
- Instrumental Analysis Center, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049, P.R. China
| | - Youliang Wang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, China
| |
Collapse
|